设AB均为n阶实对称矩阵,证明存在n阶可逆矩阵P,使得P'AP与P'BP均为对角矩阵(p’为转置矩阵)
设AB均为n阶实对称矩阵,证明存在n阶可逆矩阵P,使得P'AP与P'BP均为对角矩阵(p’为转置矩阵)
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵
AB均为n阶实对称阵,A正定,证明存在n阶实可逆阵P使P’AP和P‘BP均为对角阵(P‘为转置矩阵)
设A,B均为N阶矩阵,且AB=BA,证明:如果A,B都相似于对角阵,则存在可逆矩阵P使P^-1AP与P^-1BP均为对角
AB均为n阶正定矩阵,满足AB=BA,求证:存在一个n阶正定矩阵P,使P’AP和P’BP均为对角阵(P’为转置矩阵)
设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵
AB均为实对称矩阵,且AB=BA,如果A有n个互异的特征值,证明,存在正交矩阵P使P'AP与P'BP均为对角阵
设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B
设A,B都是n阶实对称矩阵,那么存在正交矩阵P使得 P'AP和P'BP都是对角矩阵的充分必要条件是AB=BA
设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵
求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置
设A,B为n阶实对称方阵,且A正定,则存在实可逆矩阵P,使 P' AP=E,同时P' BP=diag(λ1,…,λn).