g:C→C,ω∈C,a∈C,ω^3=1,ω≠1.证明有且仅有一个函数f:C→C,满足f(z)+f(ωz+a)=g(z),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:37:04
g:C→C,ω∈C,a∈C,ω^3=1,ω≠1.证明有且仅有一个函数f:C→C,满足f(z)+f(ωz+a)=g(z),z∈C.求出f.
f(z)+f(ωz+a)=g(z),(1)
以ωz+a代替z,得到,f(ωz+a)+f(ω(ωz+a)+a)=g(ωz+a),==>f(ωz+a)+f(ω^2z+ωa+a)=g(ωz+a),(2)
以ω^2z+ωa+a代替z,得到,f(ω^2z+ωa+a)+f(ω(ω^2z+ωa+a)+a)=g(ωz+a),==>f(ω^2z+ωa+a)+f(z)=g(ω^2z+ωa+a),(3)(因为 ω^3=1,ω≠1,得到ω^2+ω+1=0)
然后由(1)+(3)-(2),得到f(z)=[g(ω^2z+ωa+a)+g(z)-g(ωz+a)]/2,显然这样的f是唯一满足要求的啦.
以ωz+a代替z,得到,f(ωz+a)+f(ω(ωz+a)+a)=g(ωz+a),==>f(ωz+a)+f(ω^2z+ωa+a)=g(ωz+a),(2)
以ω^2z+ωa+a代替z,得到,f(ω^2z+ωa+a)+f(ω(ω^2z+ωa+a)+a)=g(ωz+a),==>f(ω^2z+ωa+a)+f(z)=g(ω^2z+ωa+a),(3)(因为 ω^3=1,ω≠1,得到ω^2+ω+1=0)
然后由(1)+(3)-(2),得到f(z)=[g(ω^2z+ωa+a)+g(z)-g(ωz+a)]/2,显然这样的f是唯一满足要求的啦.
g:C→C,ω∈C,a∈C,ω^3=1,ω≠1.证明有且仅有一个函数f:C→C,满足f(z)+f(ωz+a)=g(z),
函数概念与性质第1题 g:C→C,ω∈C,a∈C,ω^3=1,ω≠1.证明有且仅有一个函数f:C→C,满足f(z)+f(
已知函数f(x)=ax²+c/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
设函数f(x)=ax^2+1/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)
已知二次函数f(x)=ax2+bx+c(a,b,c∈Z),f(-1)=f(3),f(2)=1,且对任意x∈R都有f(x)
已知函数fx=ax²+1/bx+c(a,b,c属于Z)满足F(-x)+f(x)等于0且f1=2,f2
设函数f(x)=(ax²+1)/(bx+c) 且(a,b,c∈Z)是奇函数,且在[1,+∞)上单调递增,f(1
设奇函数f(x)=设奇函数f(x)=ax2+1/bx+c(a,b,c∈Z)满足f(1)=2,f(2)
已知函数f(x)=ax²+1/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3,则a+b-c=___
Z Y B S C Q D W L.C Z F Z D X Q W G Z M B.A…A~变成一句话 .
已知函数f(x)=ax平方+1/bx+c(a,b,c属于Z)且恒有f(-x)=-f(x),又f(1)=2,f(2)小于3
设奇函数F(X)=ax^2+1/bx+c,(a,b,c∈Z),且f(1)=2,f(2)