来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 02:10:46
根据高斯定理解答一道数学难题
求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+4+……+100)的值.
1+2+3+...+n=n(n+1)/2
1/(1+2+3+..+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+4+……+100)
=2[1-1/2+1/2-1/3+1/3-.+1/100-1/101]
=2*100/101
=200/101