已知数列{an}满足a1=3 an*a(n-1)=2a(n-1)-1,求证数列{1/(an-1)}是等差数列,并求出数列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 08:18:23
已知数列{an}满足a1=3 an*a(n-1)=2a(n-1)-1,求证数列{1/(an-1)}是等差数列,并求出数列{an}的通项公式
n和(n-1)为下标
n和(n-1)为下标
要求数列{1/(an-1)}是等差数列即就是要求
1/(an-1)-1/(a(n-1)-1)为一个常数
有1/(an-1)-1/(a(n-1)-1)=
(a(n-1)-an)/[(an-1)*(a(n-1)-1)]
=(a(n-1)-an)/[an*a(n-1)-an-a(n-1)+1]
将an*a(n-1)=2a(n-1)-1代入上式得
(a(n-1)-an)/[2a(n-1)-1-an-a(n-1)+1]
=1
故{1/(an-1)}是等差数列等比为1首相为
1/(a1-1)=1/2,通项为1/2+(n-1)=n-1/2
1/(an-1)-1/(a(n-1)-1)为一个常数
有1/(an-1)-1/(a(n-1)-1)=
(a(n-1)-an)/[(an-1)*(a(n-1)-1)]
=(a(n-1)-an)/[an*a(n-1)-an-a(n-1)+1]
将an*a(n-1)=2a(n-1)-1代入上式得
(a(n-1)-an)/[2a(n-1)-1-an-a(n-1)+1]
=1
故{1/(an-1)}是等差数列等比为1首相为
1/(a1-1)=1/2,通项为1/2+(n-1)=n-1/2
已知数列{an}满足a1=3 an*a(n-1)=2a(n-1)-1,求证数列{1/(an-1)}是等差数列,并求出数列
已知数列{an}满足a1=2,a(n+1)=(3an-2)/(2an-1),求证{1/(an-1)}是等差数列,并求数列
已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列
【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an
已知数列{an}满足2an/an+2=an+1(n属于正整数),a1=1/1006.求证:数列{1/an}是等差数列,并
已知数列{an}满足a1=1,a(n+1)=3an+2(n属于N) 1.求证数列{an+1}是等比数列 2.求{an}的
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
已知数列{an}满足a1=2,an+1=2an/an+2.求证数列{1/an}是否为等差数列 并求出an
在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an
已知数列{an}满足a1+a/4,(1-an)a(n+1)=1/4,令bn+an-1/2 求证数列{1/bn}为等差数列
已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an
已知数列{an}满足a1=1,a(n+1)=2an+1.求证(1)数列a(n+1)是等比数列;(2)求an