已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/(x^2+y^2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:24:52
已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/(x^2+y^2)
直观上,条件说明f(x,y)在原点和xy很接近.但是原点只是xy的鞍点,于是原点也不是f(x,y)的极值点.严格写下来是这样:∵lim{(x,y) → (0,0)} (f(x,y)-xy)/(x²+y²)² = 1,∴对ε = 1,存在δ > 0,使得当|x| < δ,|y| < δ时,有0 = 1-ε < (f(x,y)-xy)/(x²+y²)² < 1+ε = 2.即xy < f(x,y) < xy+2(x²+y²)² ①.又由f(x,y)在原点连续,可得f(0,0) = lim{(x,y) → (0,0)} f(x,y) = 0.考虑点列(1/n,1/n),易见n → ∞时(1/n,1/n) → (0,0).当n > 1/δ时,有1/n < δ,代入①的左端得f(1/n,1/n) > 1/n² > 0.因此在原点的任意邻域内存在使f(x,y)取正值的点.再考虑点列(1/n,-1/n),易见n → ∞时(1/n,-1/n) → (0,0).当n > 1/δ且n > 3时,有1/n < δ,代入①的右端得f(1/n,-1/n) < -1/n²+8/n⁴ = (8-n²)/n⁴ < 0.因此在原点的任意邻域内存在使f(x,y)取负值的点.于是原点不为极值点.
已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/(x^2+y^2)
已知函数f(x,y)在点(0,0)的某个邻域内连续,且limx→0,y→0f(x,y)-xy(x2+y2)2=1,则(
求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)
求函数的导数f(x)=3x^2-1 要用这种方法求 f’ (x)= lim△y/△x(△x趋于0),
设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的
已知f(x)在x=0的某个邻域内连续,且f(0)=0,limx→0f(x)1-cosx=2,则在点x=0处f(x)(
已知定义在(0,正无穷)上的函数y=f(x)满足下列条件1f(xy)=f(X)+f(Y) 2若0
求极限(工本高数)lim [2-(xy+4)^(1/2)]/xyx->0y->0证明函数f(x,y)=(x+y)/(x-
设二元函数z=f(x,y)在点P(0,1)的某邻域内可微,且f(x,y+1)=1+2x+3y+0(p),其中p=√(x^
描述二元函数Z=f(x,y)在 (0,0)点邻域内有定义,连续,偏导数存在,可微四个条件间关系
证明二元函数z=f(x,y) =xy/x^2+y^2 x,y≠0 =0 x,y=0 在(0,0)的偏导存在,但是不连续.
求lim(x→0)[(xf'(x))/(2f(x))]^(1/x),其中f(x)在x=0点某邻域内有三阶连续导数,f(0