已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:41:33
已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3)
(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3)
不等式两边同时取以e为底的对数得
ln((1+1·2)(1+2·3)(1+3·4)···(1+n(n+1)))>2n-3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3
可以利用数学归纳法证明
①当n=1时 左边=ln3>0 右边=-1
显然成立
②当n=2时 左边=ln3+ln7=ln21 右边=1 显然不等式成立
③假设n=k-1时成立 k≥3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+(k-1)k)>2k-5
那么n=k时
ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
=ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k-1))+ln(1+k(k+1))
>2k-5+ln(1+k(k+1))
∵当k≥3时 ln(1+k(k+1))>2
∴ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
>2k-5+2=2k-3
也满足不等式
综上所述ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3成立 n≥1
这道题我不太清楚为什么给个函数 可能没发现其用处
希望我的证法能给你启发.
不等式两边同时取以e为底的对数得
ln((1+1·2)(1+2·3)(1+3·4)···(1+n(n+1)))>2n-3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3
可以利用数学归纳法证明
①当n=1时 左边=ln3>0 右边=-1
显然成立
②当n=2时 左边=ln3+ln7=ln21 右边=1 显然不等式成立
③假设n=k-1时成立 k≥3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+(k-1)k)>2k-5
那么n=k时
ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
=ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k-1))+ln(1+k(k+1))
>2k-5+ln(1+k(k+1))
∵当k≥3时 ln(1+k(k+1))>2
∴ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
>2k-5+2=2k-3
也满足不等式
综上所述ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3成立 n≥1
这道题我不太清楚为什么给个函数 可能没发现其用处
希望我的证法能给你启发.
已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n
已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(
已知函数f(x)=x^2-2x+ln[(1-x)/(1+x)]
已知函数f(x)=lnx+a/(x+1)(a属于R),求证ln(n+1)>1/3+1/5+1/7+...+1/(2n +
已知x>1,求证:x>ln(1+n).
求函数f(x)=x^2ln(1+x)在x=0处的n阶导数f(n)(0)(n>=3)
已知函数f(x)=ln(x+1),
已知x>0,求证x>ln(1+x)
已知函数f(x)=ln(1+x)-x+k/2x^2 求f(x)的单调性
f(x)=ln(x^2-1),求f(n)(x),n表示n阶函数.
已知定义域在R上的函数f(x)=ln(x+根号(x^2+1)) (1)求证:f(-x)+f(x)=0 (2)求f^-1(
已知函数f(x)=x-1/2ax^-ln(x+1)