作业帮 > 数学 > 作业

一道线性规划问题,若点P(m,n)在由不等式组x+y-7≤0,x-2y+5≤0,2x-y+1≥0所确定的区域内,则n-m

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:38:08
一道线性规划问题,
若点P(m,n)在由不等式组x+y-7≤0,x-2y+5≤0,2x-y+1≥0所确定的区域内,则n-m最小值为
可行域我已经画出来了,但不会处理n-m……求讲解!
一道线性规划问题,若点P(m,n)在由不等式组x+y-7≤0,x-2y+5≤0,2x-y+1≥0所确定的区域内,则n-m
第一步:画可行域.
第二步:移目标函数.这道题令z=n-m,则移动n-m=0这条直线.(其实m、n就相当平时做题中的x、y).可确定x-2y+5=0,2x-y+1=0交点为所求最优解.
第三步:解出最优解.解方程组 x-2y+5=0 可得x=1 即P(1,3)
2x-y+1=0 y=3
第四步:求最值.n-m=3-1=2
第五步:答.n-m最小值为2.
以后解这类题就按照这五个步骤做.
再问: 我想问一下,移动n-m=0这条直线是为了看它在y轴上的截距吗?如果是那最小截距不是x+y-7=0和x-2y+5=0相交时得到的吗?……如果不是麻烦再解释一下吧,谢谢
再答: 是看截距呀。你是不把可行域画错了吧。是x-2y+5=0 和2x-y+1=0交点。 其实,若可行域是封闭的。你可把三个交点算出来,带入,最大的数是最大值,最小的数是最小值。