作业帮 > 数学 > 作业

函数问题(高中)已知函数F(X)=X+(1/X)+A^2,G(X)=X^3-A^3+2A+1 若存在X1,X2属于[1/

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 13:59:01
函数问题(高中)
已知函数F(X)=X+(1/X)+A^2,G(X)=X^3-A^3+2A+1 若存在X1,X2属于[1/A,A],(A>1) 使得 |F(X1)-F(X2)|小于等于9,则A的取值范围是?
(急需详细思路过程)
函数问题(高中)已知函数F(X)=X+(1/X)+A^2,G(X)=X^3-A^3+2A+1 若存在X1,X2属于[1/
F(X)在 [1/A,1]减,在[1/A,A]增,(A>1) F(x)∈【2+A^2,A+A^2+1/A} ,
G(X)在[1/A,A]增,G(x)∈【1/A^3-A^3+2A+1,2A+1}
所以 |F(X1)-F(X2)|小于等于9 《===》-9
再问: |F(X1)-F(X2)|小于等于9 《===》-9