等腰直角三角形ABC中,角C等于90度,扇形CE中,圆心角CEF等于45度,CE=CA,扇形绕点C旋转,CE,CF交AB
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:09:06
等腰直角三角形ABC中,角C等于90度,扇形CE中,圆心角CEF等于45度,CE=CA,扇形绕点C旋转,CE,CF交AB与点M,N.试说明MN平方等于AM平方加BN平方.
(根据题意,修改了其中以个已知,应该是圆心角ECF等于45度)
证明:在弧AB上作一点P,连接CP,使∠ACE=∠ECP,同时连接PM、PN
因为∠ACB=90°,且∠ECP+∠FCP=∠ECF=45°,所以∠ACE+∠BCF=45°
所以∠FCP=∠BCF
因为AC合PC同为圆的半径,所以AC=CP,且CM为△ACM和△MCP的公共边
所以△ACM全等于△MCP,即AM=PM,且∠AME=∠PME (同外角相等)
同理可证,BN=PN,且∠PNF=∠BNF
∠CAM=45°,所以∠AME=∠CAM+∠ACM=45°+∠ACM
所以∠NMP=180°- ∠AMP=180°- 2 *∠AME=180°- 2 * (45°+∠ACM) = 90°- 2 * ∠ACM
同理可得 ∠MNP=90°- 2 * ∠BCN
所以∠NMP+∠MNP=90°- 2 * ∠ACM + 90°- 2 * ∠BCN=180°- 2 * (∠ACM+∠BCN)=90°
所以∠MPN=90°,满足勾股定理 MN²=PM²+PN²=AM²+BN²
证明:在弧AB上作一点P,连接CP,使∠ACE=∠ECP,同时连接PM、PN
因为∠ACB=90°,且∠ECP+∠FCP=∠ECF=45°,所以∠ACE+∠BCF=45°
所以∠FCP=∠BCF
因为AC合PC同为圆的半径,所以AC=CP,且CM为△ACM和△MCP的公共边
所以△ACM全等于△MCP,即AM=PM,且∠AME=∠PME (同外角相等)
同理可证,BN=PN,且∠PNF=∠BNF
∠CAM=45°,所以∠AME=∠CAM+∠ACM=45°+∠ACM
所以∠NMP=180°- ∠AMP=180°- 2 *∠AME=180°- 2 * (45°+∠ACM) = 90°- 2 * ∠ACM
同理可得 ∠MNP=90°- 2 * ∠BCN
所以∠NMP+∠MNP=90°- 2 * ∠ACM + 90°- 2 * ∠BCN=180°- 2 * (∠ACM+∠BCN)=90°
所以∠MPN=90°,满足勾股定理 MN²=PM²+PN²=AM²+BN²
等腰直角三角形ABC中,角C等于90度,扇形CE中,圆心角CEF等于45度,CE=CA,扇形绕点C旋转,CE,CF交AB
在直角三角形ABC中,角ACB等于90度,CA等于CB,有一个圆心角为45度,半径的长等于CA的扇形CEF绕点C旋转,且
已知Rt△ABC中,∠ACB=90度,CA=CB,有一个圆心角为45度,半径的长等于CA的扇形CEF绕点C旋转,且直线C
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线C
已知直角三角形ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长为CA的扇形CEF绕点C旋转,且直线C
等腰直角三角形ABC中角C等于90度,AC=BC,D为BC的中点,E为斜边AB上的一点,且AE=2EB,CE与AD交于点
已知Rt△ABC中,∠ACB=90度,CA=CB,有一个圆心角为45度,半径的长等于CA的扇形CEF绕
在三角形ABC中,角B等于90度,AB等于BC,BD等于CE,M为AC边上的中点,求证三角形DEM是等腰直角三角形点
等腰直角三角形abc,角c为90度,中线为ad,过c作ce垂直ad,交与ab与e点,求证角cda等于角EDB
在等腰直角三角形ABC中,角C=90°,AD是BC边上的中线,过C作CE⊥AD,CE交AD于E,交AB于F,
如图,已知直角三角形ABC中,角C等于90度,BC=10,AC=6,DE是AB的中垂线.求CE,BE的长.
已知如图,三角形ABC,三角形CEF均为直角三角形,角ABC=角CEF=90度,AB=BC,CE=EF,点C,B,E在同