已知:Sn为数列bn的前几项和,且满足(2bn)/(bnSn-Sn^2)=1 ,b1=1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 19:10:59
已知:Sn为数列bn的前几项和,且满足(2bn)/(bnSn-Sn^2)=1 ,b1=1.
证明:(1)数列{1/Sn}成等差(2)求数列{bn}的通项公式
证明:(1)数列{1/Sn}成等差(2)求数列{bn}的通项公式
由(2bn)/(bnSn-Sn^2)=1
=〉 Sn^2-bnSn+2bn=0
将bn=Sn-S[n-1] (n-1是下标)(n>0)
Sn^2-(Sn-S[n-1])Sn+2(Sn-S[n-1])=0
=>S[n-1])Sn+2(Sn-S[n-1])=0
=>1/Sn-1/S[n-1]=1/2
即数列{1/Sn}成等差数列,公差为1/2
又b1=1 所以 1/S1=1
所以数列{1/Sn}通式为1+(n-1)/2=(n+1)/2
所以 Sn=2/(n+1)
=> bn=Sn-S[n-1]=2/(n+1)-2/n=-2/[n(n+1)]
=〉 Sn^2-bnSn+2bn=0
将bn=Sn-S[n-1] (n-1是下标)(n>0)
Sn^2-(Sn-S[n-1])Sn+2(Sn-S[n-1])=0
=>S[n-1])Sn+2(Sn-S[n-1])=0
=>1/Sn-1/S[n-1]=1/2
即数列{1/Sn}成等差数列,公差为1/2
又b1=1 所以 1/S1=1
所以数列{1/Sn}通式为1+(n-1)/2=(n+1)/2
所以 Sn=2/(n+1)
=> bn=Sn-S[n-1]=2/(n+1)-2/n=-2/[n(n+1)]
已知:Sn为数列bn的前几项和,且满足(2bn)/(bnSn-Sn^2)=1 ,b1=1.
an等差数列 bn前n项和sn满足sn=3(bn-1)/2 且a2=b1 a5=b2 ⑴求an bn通项 ⑵设tn为数列
已知数列an的前n项和为Sn,且满足Sn=n^2,数列bn=1/anan+1,Tn为数列bn的前几项和 1,求an的通项
已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.
1.已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且b(n+1)=bn+2.
已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.
急...设Sn为数列{an}的前n项的和,且Sn=2分之3(an-1)(n属于N正),数列{bn}的通项公式bn=4n+
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:bn;{bn}的前n项和Tn
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn
数列{bn}的前n项和为Sn,且满足Sn=2bn-1,求{bn}的通项公式
已知数列an bn其中a1=1/2数列an的前n项和Sn=n^2an(n≥1) 数列bn满足b1=2 bn+1=2bn