作业帮 > 数学 > 作业

求证方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 06:50:37
求证方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.
求证方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.
充分性:当a=0时,方程变为2x+1=0,其根为x=−
1
2,方程只有一个负根;
当a=1时,方程为x2+2x+1=0.其根为x=-1,
方程只有一个负根.
当a<0时,△=4(1-a)>0,方程有两个不相等的根,且
1
a<0,方程有一正一负根.
必要性:若方程ax2+2x+1=0有且仅有一个负根.
当a=0时,适合条件.
当a≠0时,方程ax2+2x+1=0有实根,
则△=4(1-a)≥0,∴a≤1,
当a=1时,方程有一个负根x=-1.
若方程有且仅有一负根,则

a<1

1
a<0∴a<0
综上方程ax2+2x+1=0有且仅有一负根的充要条件为a≤0或a=1