如何判断一个方程是否是圆的方程?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:35:41
如何判断一个方程是否是圆的方程?
圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件.
圆的方程编辑
X²+Y²=1 ,圆心O(0,0)被称为1单位圆
x²+y²=r²,圆心O(0,0),半径r;
(x-a)²+(y-b)²=r²,圆心O(a,b),半径r.
确定圆方程的条件
圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件.
确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:
根据题意,设所求的圆的标准方程(x-a)²+(y-b)²=r²;
根据已知条件,建立关于a、b、r的方程组;
解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.
2方程推导编辑
(x-a)²+(y-b)²=r²
在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点.
圆是平面到定点距离等于定长的所有点的集合.
所以√[(x-a)²+(y-b)²]=r
两边平方,得到
即(x-a)²+(y-b)²=r²
3一般式编辑
x²+y²+Dx+Ey+F=0
此方程可用于解决两圆的位置关系
配方化为标准方程:(x+D/2)².+(y+E/2)²=( (D²+E²-4F)/4 )
其圆心坐标:(-D/2,-E/2)
半径为r=[√(D²+E²-4F)]/2
此方程满足为圆的方程的条件是:
D²+E²-4F>0
若不满足,则不可表示为圆的方程
已知直径的两个端点坐标A(m,n)B(p,q)设圆上任意一点C(x,
Y).则有:向量AC*BC=0 可推出方程:(X-m)*(X-p)+(Y-n)*(Y-q)=0 再整理即可得出一般方程.
4点与圆编辑
点P(X1,Y1) 与圆 (x-a)^2+(y-b) ^2=r^2的位置关系:
⑴当(x1-a)²+(y1-b) ²>r²时,则点P在圆外.
⑵当(x1-a)²+(y1-b) ²=r²时,则点P在圆上.
⑶当(x1-a)²+(y1-b) ²0,则圆与直线有2交点,即圆与直线相交.
如果b²-4ac=0,则圆与直线有1交点,即圆与直线相切.
如果b²-4ac
圆的方程编辑
X²+Y²=1 ,圆心O(0,0)被称为1单位圆
x²+y²=r²,圆心O(0,0),半径r;
(x-a)²+(y-b)²=r²,圆心O(a,b),半径r.
确定圆方程的条件
圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件.
确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:
根据题意,设所求的圆的标准方程(x-a)²+(y-b)²=r²;
根据已知条件,建立关于a、b、r的方程组;
解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.
2方程推导编辑
(x-a)²+(y-b)²=r²
在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点.
圆是平面到定点距离等于定长的所有点的集合.
所以√[(x-a)²+(y-b)²]=r
两边平方,得到
即(x-a)²+(y-b)²=r²
3一般式编辑
x²+y²+Dx+Ey+F=0
此方程可用于解决两圆的位置关系
配方化为标准方程:(x+D/2)².+(y+E/2)²=( (D²+E²-4F)/4 )
其圆心坐标:(-D/2,-E/2)
半径为r=[√(D²+E²-4F)]/2
此方程满足为圆的方程的条件是:
D²+E²-4F>0
若不满足,则不可表示为圆的方程
已知直径的两个端点坐标A(m,n)B(p,q)设圆上任意一点C(x,
Y).则有:向量AC*BC=0 可推出方程:(X-m)*(X-p)+(Y-n)*(Y-q)=0 再整理即可得出一般方程.
4点与圆编辑
点P(X1,Y1) 与圆 (x-a)^2+(y-b) ^2=r^2的位置关系:
⑴当(x1-a)²+(y1-b) ²>r²时,则点P在圆外.
⑵当(x1-a)²+(y1-b) ²=r²时,则点P在圆上.
⑶当(x1-a)²+(y1-b) ²0,则圆与直线有2交点,即圆与直线相交.
如果b²-4ac=0,则圆与直线有1交点,即圆与直线相切.
如果b²-4ac