作业帮 > 数学 > 作业

有关数列的几道填空题(最好有说明过程)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:51:35
有关数列的几道填空题(最好有说明过程)
1.在公比为整数{an}中,如果a1+a4=18,a2+a3=12,则这个等比数列前8项的和为______
2.若数列{an}的前n项和为Sn=3^n+a,若数列{an}为等比数列,则实数a的取值是______
3.已知方程(x2-2x+m)(x2-2x+n)=0的的四个根组成一个首项为1/4的等差数列,则|m-n|=______
有关数列的几道填空题(最好有说明过程)
1.公比为q吧?
a1+a4=a1+q^3*a1=(1+q^3)*a1=18 .①
a2+a3=q*a1+q^2*a1=(q+q^2)*a1=12 .②
由①②解得a1=2,q=2
又Sn=a1*(1-q^n)/(1-q)=2(2^n-1)=2^(n+1)-2
所以S8=2^9-2
2.Sn=3^n+a,则S(n+1)=3^(n+1)+a
S(n+1)-Sn=a(n+1)=3^(n+1)-3^n=2*3^n
所以an=2*3^(n-1),a1=2,q=3
Sn=a1*(1-q^n)/(1-q)=3^n-1
所以a=-1
3.(因为有4个根,所以题中的隐含条件为m.n都小于1,分别求△可知)
不妨令1>m>n>0
括号内分别用求根公式,可知方程的4个根分别是:1±√(1-m)和1±√(1-n)
因为m>n,所以从小到大排列为:1-√(1-n),1-√(1-m),1+√(1-m),1+√(1-n)
由题,1-√(1-n)=1/4,因此1+√(1-n)=7/4,所以公差d=2/4=1/2
因此1-√(1-m)=3/4
由上可以解得m=15/16,n=7/16
所以|m-n|=1/2