函数f(x)的定义域为D,若满足
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 05:16:40
函数f(x)的定义域为D,若满足
①f(x)在D内是单调函数,②存在[m,n]包含于D,使f(x)在[m,n]上的值域为[½m,½n],那么就称y=f(x)为“好函数”.现有f(x)=loga(a^x+k),(a>0,a≠1)是“好函数”,则k的取值范围是
A.(0,¼) B.(负无穷,¼) C .(0,正无穷) D.(0,¼)
①f(x)在D内是单调函数,②存在[m,n]包含于D,使f(x)在[m,n]上的值域为[½m,½n],那么就称y=f(x)为“好函数”.现有f(x)=loga(a^x+k),(a>0,a≠1)是“好函数”,则k的取值范围是
A.(0,¼) B.(负无穷,¼) C .(0,正无穷) D.(0,¼)
此题的考点是:函数的值域.
专题:计算题.
分析:由题意可知f(x)在D内是单调增函数,才为“好函数”,从而可构造函数f(x)=12x,转化为求loga(ax+k)=12x有两异正根,k的范围可求.
因为函数f(x)=loga(ax+k),(a>0,a≠1)在其定义域内为增函数,则若函数y=f(x)为“好函数”,
方程f(x)=12x必有两个不同实数根,
∵loga(ax+k)=12x⇔ax+k=ax2⇔ax-ax2+k=0,
∴方程t2-t+k=0有两个不同的正数根,k∈(0,14).
故选D.
点评:本题考查函数的值域,难点在于构造函数,转化为两函数有不同二交点,利用方程解决,属于难题.
这么详细加效率,楼主果断采纳吧!
专题:计算题.
分析:由题意可知f(x)在D内是单调增函数,才为“好函数”,从而可构造函数f(x)=12x,转化为求loga(ax+k)=12x有两异正根,k的范围可求.
因为函数f(x)=loga(ax+k),(a>0,a≠1)在其定义域内为增函数,则若函数y=f(x)为“好函数”,
方程f(x)=12x必有两个不同实数根,
∵loga(ax+k)=12x⇔ax+k=ax2⇔ax-ax2+k=0,
∴方程t2-t+k=0有两个不同的正数根,k∈(0,14).
故选D.
点评:本题考查函数的值域,难点在于构造函数,转化为两函数有不同二交点,利用方程解决,属于难题.
这么详细加效率,楼主果断采纳吧!
函数f(x)的定义域为D,若满足
对于定义域为d的函数y=f(x),若同时满足下列条件
.定义域为D的函数f(x)同时满足条件
对于定义域为D的函数y=f(x),若同时满足下列条件:(1)f(x)在D内单调递增或单调递减
已知定义域为R的函数f(x)满足
函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]属于D,是f(x) 在[a,b]上的值域为[
函数f(x)的定义域为D,若满足:1.f(x)在D内是单调函数;存在[a,b]属于D,使得f(x)在[a,b]上得值域为
函数f(x)的定义域为D={x|x不等于零},且满足对于任意x1,x2∈D,有f(x1x2)=f(x1)+f(x2);
已知定义域为R的函数f(x)满足f=f(X)-x^2+x
已知函数f(x)的定义域为D,且f(x)同时满足以下条件:①f(x)在D上单调递增或单调递减
已知集合M是满足下列性质函数f(x)的全体,若函数f(x)的定义域为D,对于任意的X1,X2属于D,有|f(x1)—f(
对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调