作业帮 > 数学 > 作业

正方形ABCD内有一点P,已知PA=根号2,PC=3倍根号2,∠APB=135°求PB、PD的长度.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:38:10
正方形ABCD内有一点P,已知PA=根号2,PC=3倍根号2,∠APB=135°求PB、PD的长度.
正方形ABCD内有一点P,已知PA=根号2,PC=3倍根号2,∠APB=135°求PB、PD的长度.
以B为旋转中心,将ΔCPB顺时针旋转90°,使CB与AB重合,P移至Q点,连PQ.
则BP=BQ,AQ=CP.
对于△BPQ,易得∠QBP=90°,且BP=BQ,则∠BPQ=∠BQP=45°,
所以∠APQ= 135-45 = 90°,AQ=CP=3√2,AP=√2,则PQ=4,所以BP=2√2
同理,通过逆时针旋转ΔAPB,可以得到PD=√10