已知:tan(α+8π/7)=a则:[sin(α+15π/7)+3cos(α-13π/7)]/[sin(-α+2π/7)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 22:20:41
已知:tan(α+8π/7)=a则:[sin(α+15π/7)+3cos(α-13π/7)]/[sin(-α+2π/7)-cos(α+22π/7)]=要详细过
程
程
x=α+8π/7,则有:tanx=a
∴15π/7+α=π+(α+8π/7)=π+x
α-13π/7=(α+8π/7)-3π=x-3π
20π/7-α=4π-(α+8π/7)=4π-x
α+22π/7=(α+8π/7)+2π=x+2π
于是,原所求证等式左侧:
左侧=[sin(π+x)+3cos(x-3π)]/[sin(4π-x)-cos(x+2π)]
=(-sinx-3cosx)/(-sinx-cosx)
=(sinx+3cosx)/(sinx+cosx)
=[(sinx+3cosx)/cosx]/[(sinx+cosx)/cosx]
=(tanx+3)/(tanx+1)
=(a+3)/(a+1)
∴15π/7+α=π+(α+8π/7)=π+x
α-13π/7=(α+8π/7)-3π=x-3π
20π/7-α=4π-(α+8π/7)=4π-x
α+22π/7=(α+8π/7)+2π=x+2π
于是,原所求证等式左侧:
左侧=[sin(π+x)+3cos(x-3π)]/[sin(4π-x)-cos(x+2π)]
=(-sinx-3cosx)/(-sinx-cosx)
=(sinx+3cosx)/(sinx+cosx)
=[(sinx+3cosx)/cosx]/[(sinx+cosx)/cosx]
=(tanx+3)/(tanx+1)
=(a+3)/(a+1)
已知:tan(α+8π/7)=a则:[sin(α+15π/7)+3cos(α-13π/7)]/[sin(-α+2π/7)
已知sin(a-π/4)=7√2 ̄/10,cos 2α=7/25,求sinα及tan(α+π/3)
设tan(α+8π/7)=a 求证:[ sin(15π/7+α)+3cos(α-13π/7)]/[sin(20π/7-α
已知sin(π+α)=-1/2 计算 cos(2π-α) tan(α-7π)
已知tanα=-1/2,求sin(α-7π)cos(α+5π).
已知tan(α+π/4)=2,则(2sinα+cosα)/(3cosα-2sinα)
已知sin a=2cos a 计算⑴(sinα+2cosα)/(5cosα-sinα) ⑵tan(α+π/4)
1)tan(3π-α)/sin(π-α)sin(3/2π-α)+sin(2π-α)cos(α-7/2π)/sin(3/2
已知tanα=2,sinα+cosα<0,求[sin(2π-α)*sin(π+α)*cos(-π+α)]/[sin(3π
已知sinα=-7/25,且α∈(3π/2,2π),求cosα,tanα
已知tanα=2,则sin(π+α)+cos(π-α)/sin(-α)+cos(-α)=
已知sin α+cos α=7/13,且α∈(0,π),则tan α=