作业帮 > 数学 > 作业

概率:以半径为1的圆内任一点为中心作弦,求弦长超过圆内接等边三角形边长的概率

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:30:51
概率:以半径为1的圆内任一点为中心作弦,求弦长超过圆内接等边三角形边长的概率
我的想法:画一条半径,该点要在三角形边长内,那么就应该是1/2
我是想用线段比反映概率,可是正确答案是用面积的.
为什么用线段不可以,面积不是由好几条线段组成的么?
我是想说列举一半径,在这条半径上得到的概率是1/4。这条半径是随机的,等可能,所以这条半径得到的概率可以反应整个面积的
概率:以半径为1的圆内任一点为中心作弦,求弦长超过圆内接等边三角形边长的概率
你是不是想说,这个点总在某一条半径上运动?
而实际上不可以,这个点是等可能地在整个圆内出现的,如果固定在某一条半径上则有利样本空间和样本空间都没有考虑完全
所以要算使条件成立的区域的面积和整个圆的面积的比.
其实这个题是贝特朗奇论的变形,贝特朗奇论有三个解是因为对等可能的定义有歧义,而这道题根据题目的想法是让中心点等可能地在圆内出现,所以答案给了一个面积比的做法.具体你再查查有叙述贝特朗奇论的概率课本吧.这个题出得也不是太严谨.