1+(1+2)+(1+2+3)+……+(1+2+3+…… n) 共有n个.(化简)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 20:39:01
1+(1+2)+(1+2+3)+……+(1+2+3+…… n) 共有n个.(化简)
是有n个式子!
是有n个式子!
用数列的方法做
1=1*(1+1)/2
1+2=2*(1+2)/2
1+2+3=3*(1+3)/2
...
...
1+2+3+...+n=n*(1+n)/2
S=1+(1+2)+(1+2+3)+......+(1+2+3+......+n)
=1*(1+1)/2+2*(1+2)/2+3*(1+3)/2+......+n*(1+n)/2
=1/2*{(1平方+2平方+3平方+...+n平方)+(1+2+3+...+n)}
=1/2*{n(n+1)(2n+1)/6+n(n+1)/n
题目中n=100
所以1+(1+2)+(1+2+3)+......+(1+2+3+......+100)=33451/2
注:*表示乘
这里用到等差数列前n项和公式,还用到中学不学的,前n项平方和公式1平方+2平方+3平方+...+n平方=n(n+1)(2n+1)/6
数列的分组求和法
1=1*(1+1)/2
1+2=2*(1+2)/2
1+2+3=3*(1+3)/2
...
...
1+2+3+...+n=n*(1+n)/2
S=1+(1+2)+(1+2+3)+......+(1+2+3+......+n)
=1*(1+1)/2+2*(1+2)/2+3*(1+3)/2+......+n*(1+n)/2
=1/2*{(1平方+2平方+3平方+...+n平方)+(1+2+3+...+n)}
=1/2*{n(n+1)(2n+1)/6+n(n+1)/n
题目中n=100
所以1+(1+2)+(1+2+3)+......+(1+2+3+......+100)=33451/2
注:*表示乘
这里用到等差数列前n项和公式,还用到中学不学的,前n项平方和公式1平方+2平方+3平方+...+n平方=n(n+1)(2n+1)/6
数列的分组求和法
1+(1+2)+(1+2+3)+……+(1+2+3+…… n) 共有n个.(化简)
在1,2,3,……,N,这N个自然数中,共有a个质数,b个合数,m个奇数,n个偶数,则(m-a)+(n-b)=
若集合1、2、3……n供n个元素,请问共有几个子集,为什么?
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
将(1+2+3+……+n)+2002表示为n(n>1)个连续自然数的和,共有多少种不同的表示方法.
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
求极限Xn=n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+……+n/(n^2+n),
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N