作业帮 > 数学 > 作业

三道高一数学平面向量范围内的数学题

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 12:19:32
三道高一数学平面向量范围内的数学题
1,已知△ABC中,a =5,b =8,C =60° ,求向量BC→ 乘以向量CA→ .(由于向量符号箭头 → 无法标注在字母上方,只能这样书写,请各位朋友谅解).
2,已知 | a | =2,| b | =5,a • b = -3,求 | a + b | ,| a - b | .
3,已知| a | = 8,| b | =10,| a + b | = 16,求 a 与 b 的夹角θ (精确到 1°)
三道高一数学平面向量范围内的数学题
向量BC→ 乘以向量CA→=5*8 cos60= 20
2 | a + b |²=(a+b) • (a+b)=a²+b²+2a • b=4+25-6=23
∴ | a + b | =23^½
同理可得| a - b |
3,由| a + b |²,可得a • b的值,再算夹角θ
再问: 你好!这位朋友。首先感谢你的热心解答,不过第一道题好像没那么简单。
再答: 是的,不好意思,第一题做错了。 是 向量BC 乘以向量CA 不是向量CB 乘以向量CA 向量BC 和向量CA的夹角是120°。 ∴最后答案应该是 |BC |* | CA |* cos120°=5*8 cos120°=-20