作业帮 > 数学 > 作业

已知双曲线为x^2/a^2-y^2/b^2=1的顶点为A1,A2,左焦点为F1,P为双曲线右支上任一点,证明:以PF1为

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:12:36
已知双曲线为x^2/a^2-y^2/b^2=1的顶点为A1,A2,左焦点为F1,P为双曲线右支上任一点,证明:以PF1为直径的圆与以A1A2为直径的圆内切.
已知双曲线为x^2/a^2-y^2/b^2=1的顶点为A1,A2,左焦点为F1,P为双曲线右支上任一点,证明:以PF1为
要看清事物的本质才是王道!
你想想看内切有什么性质?不就是两个大圆的半径R(1/2PF1)-小圆的半径r(a)=两圆的圆心距离?
我现在连接PF2 设以PF1为直径的圆圆心为S 连接SO
那么SO不就是三角形F1PF2的中位线么?
所以SO=1/2PF2为两圆圆心距离
又因为PF1-PF2=2a
a=1/2PF1-1/2PF2
所以R-r=1/2PF1-a=1/2PF2=SO
得证