作业帮 > 数学 > 作业

求幂级数∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:18:33
求幂级数∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数
求幂级数∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数
∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数
1.收敛域
显然收敛区间为(-1,1)
2nx^(2n-1)/(2n-1)=(2n-1+1)x^(2n-1)/(2n-1)=x^(2n-1)+x^(2n-1)/(2n-1)
∑(∞,n=1)x^(2n-1)在x=±1时发散,所以
收敛域为(-1,1)
2.和函数
2nx^(2n-1)/(2n-1)=(2n-1+1)x^(2n-1)/(2n-1)=x^(2n-1)+x^(2n-1)/(2n-1)
∑(∞,n=1)2nx^(2n-1)/(2n-1)=
∑(∞,n=1)x^(2n-1)+∑(∞,n=1)x^(2n-1)/(2n-1)=s1+s2
s1=x/(1-x^2)
∑(∞,n=1)x^(2n-1)/(2n-1)=s2
s2'=[∑(∞,n=1)x^(2n-1)/(2n-1)]'
=∑(∞,n=1)[x^(2n-1)/(2n-1)]'
=∑(∞,n=1)x^(2n-2)
=1/(1-x^2)
s1=∫(0到x)s1'dx=∫(0到x)1/(1-x^2)dx=1/2ln|(1+x)/(1-x)|
所以幂级数∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数为
s(x)=x/(1-x^2)+1/2ln|(1+x)/(1-x)|.