讨论函数在区间的一致收敛性:fn(x)=(x^2+nx)/n,(i)x∈(-∞,+∞),(ii)x∈[a,b]
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 20:00:49
讨论函数在区间的一致收敛性:fn(x)=(x^2+nx)/n,(i)x∈(-∞,+∞),(ii)x∈[a,b]
由于fn(x)收敛于极限函数x,所以只要考察sup|(x^2+nx)/n-x|=sup|x^2/n|即可,当x∈(-∞,+∞)时,sup|x^2/n|>n/n=1,故fn(x)在(-∞,+∞)不一致收敛,当x∈[a,b]时,由于y=x^2在闭区间[a,b]上有最大值,设最大值为M,则sup|x^2/n|≤M/n,故n趋于无穷时,limsup|x^2/n|=0,因此fn(x)在[a.b]时一致收敛.
讨论函数在区间的一致收敛性:fn(x)=(x^2+nx)/n,(i)x∈(-∞,+∞),(ii)x∈[a,b]
函数列一致收敛性 讨论 fn(x)=x^n 在区间(0,1)和(0,1/2)内的一致收敛性
判断下列函数列在所给区间的一致收敛性 fn(x)=x/(1+(n^2)x^2),n=1,2,...,x∈(-∞,+∞)
在区间(1,-1)内,求幂级数∑nx^n=x+2x^2+.+nx^n的和函数,
f(x)=[ln(1+nx^2)]/n^3的一致收敛性
已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式
一道函数项级数的问题f(x) = Σ(x+1/n)^n D = (-1,1) 讨论(1)函数项级数的一致收敛性 (2)和
已知函数f(x)=a+(1-2a)/(x+2),(a≠1/2),试讨论函数f(x)在区间(-2,+∞)上的单调性.
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的
已知函数f(x) =lnx+2a/x,a∈R.讨论函数f(x)在 [1,2]上的单调性及单调区间.
导数题的解答F(x)=x³+ax²+x+1 a∈R,讨论函数F(x)的单调区间设在区间(-2/3,-
函数f(x)=x^3+ax^2+x+1,a∈R.(1)讨论函数f(x)的单调区间(2)设函数f(x)在(-2/3,-1/