设齐次线性方程组A23X=0有基础解系ξ1,ξ2,向量β1,β2=(1,2,3)都与ξ1,ξ2正交,求β1
设齐次线性方程组A23X=0有基础解系ξ1,ξ2,向量β1,β2=(1,2,3)都与ξ1,ξ2正交,求β1
已知向量组α1,α2,α3是齐次线性方程组AX=0的一个基础解系
判断:若向量β与向量α1,α2都正交,则β与α1,α2的任一线性组合也正交.
设向量α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是Ax=0的解,即Aβ≠0.
设α1、α2、α3是线性方程组Ax=0的基础解系,β是Ax=b的解,求证向量组α1、α2、α3、β线性无关
设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系,求AX=b通
设n维向量组α1,α2,...,αn线性无关,证明:若n维向量β与每个αi(i=1,2,...,n)都正交,则β=0
已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.
求一个齐次线性方程组AX=0,使得向量组n1=(1,2,3,4)∧T,n2=(4,3,2,1)∧T是它的一个基础解系
在R^3中,与向量a1=(1,1,1),a2=(1,2,1)都正交的单位向量是
设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证
线性代数向量正交向量a1=(-1.1.1)T a2=(1.0.1)T。求一个向量a3使a3与a1,a2都正交。