设正数数列{an}前项和为Sn,且存在正数t,使得对所有正整数n有更号下tS=(t+an)/2.则通过归纳猜想可得到Sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:59:32
设正数数列{an}前项和为Sn,且存在正数t,使得对所有正整数n有更号下tS=(t+an)/2.则通过归纳猜想可得到Sn=?
写出基本步揍!
写出基本步揍!
如果t == 0.5,
Sn == 0.5+an,
那么就有
a1 == 0.5+a1
显然是不合理的!所以
t != 0.5,
2t*a1 == t+a1 --> a1 == t/(2t-1),
2t(a1+a2) == t+a2 --> 2t*a2 == a2-a1,
2t(a1+a2+a3) == t+a3 --> 2t*a3 == a3-a2,
......
2t(a1+a2+...+an) == t+an --> 2t*an == an-a(n-1),
很明显an 是一个等比数列:
an == a(n-1)/(1-2t)
而且 a1 == t/(2t-1),
根据等比数列求和公式可以得到结果~!
Sn == a1(1-q^n)/(1-q)
== t/(2t-1)[1-1/(1-2t)^n] /[1-1/(1-2t)]
== 1/2-1/[2(1-2t)^n].
Sn == 0.5+an,
那么就有
a1 == 0.5+a1
显然是不合理的!所以
t != 0.5,
2t*a1 == t+a1 --> a1 == t/(2t-1),
2t(a1+a2) == t+a2 --> 2t*a2 == a2-a1,
2t(a1+a2+a3) == t+a3 --> 2t*a3 == a3-a2,
......
2t(a1+a2+...+an) == t+an --> 2t*an == an-a(n-1),
很明显an 是一个等比数列:
an == a(n-1)/(1-2t)
而且 a1 == t/(2t-1),
根据等比数列求和公式可以得到结果~!
Sn == a1(1-q^n)/(1-q)
== t/(2t-1)[1-1/(1-2t)^n] /[1-1/(1-2t)]
== 1/2-1/[2(1-2t)^n].
设正数数列{an}前项和为Sn,且存在正数t,使得对所有正整数n有更号下tS=(t+an)/2.则通过归纳猜想可得到Sn
设正项数列an的前n项和为Sn,且存在正数t,使得对所有正整数n,t与an的等差中项和t与Sn的等比中项相等
设正整数列《an》前n项和为Sn,且存在正整数t,使得对所有自然数n,有(根号下tSn)=(t+an)/2,则Sn等于
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
数学推理题..设正数数列{an}的前n项和为S,且存在正数t,使得对所有自然数n,有着 √tSn=(t+an)/2,则通
设各项均为正数的数列{an}的前n项和为sn已知a1=1且(Sn+1+λ)an=(Sn+1)an+1对一切n∈正整数成立
设{an}是正数组成的数列,其前n项和为Sn,且对所有的正整数n,an与2的等差中项等于Sn与2的等比中项,求:数列{a
设{an}是由正数组成的数列,其前n项和为Sn,且对于所有正整数n,有 an=2√2Sn-2(Sn在根号里面).
设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,存在正数t,使an与t的等差中项等于...
设{an}是正数组成的数列,前n项和为Sn,并且对所有正整数n,an与1的等差中项等于Sn与1的等比中项,则{an}的前
设{an}是正数组成的数列,其前n项和为Sn,并对所有正整数n,an与1的等差中项等于
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.(1)若数列