高中一向量题O.A.B.C是平面上任意三点不共线的定点,p为平面上一动点,若点p满足OP=OA+λ(AB+AC)(以上全
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:12:04
高中一向量题
O.A.B.C是平面上任意三点不共线的定点,p为平面上一动点,若点p满足OP=OA+λ(AB+AC)(以上全为向量),λ∈(0,+∞),则直线P一定经过三角形ABC的那个心
O.A.B.C是平面上任意三点不共线的定点,p为平面上一动点,若点p满足OP=OA+λ(AB+AC)(以上全为向量),λ∈(0,+∞),则直线P一定经过三角形ABC的那个心
重心
给你一些结论吧:
1.AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心
2.AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心
3.AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心
(和你的题目上一样,移项OP-OA=AP)
还有:
1 若P是△ABC的重心 PA+PB+PC=0
2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积)
3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)
4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²
(AP就表示AP向量 |AP|就是它的模)
给你一些结论吧:
1.AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心
2.AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心
3.AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心
(和你的题目上一样,移项OP-OA=AP)
还有:
1 若P是△ABC的重心 PA+PB+PC=0
2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积)
3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)
4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²
(AP就表示AP向量 |AP|就是它的模)
高中一向量题O.A.B.C是平面上任意三点不共线的定点,p为平面上一动点,若点p满足OP=OA+λ(AB+AC)(以上全
O是平面上一点,A、B、C是该平面上不共线的三个点,一动点P满足向量OP=向量OA+λ(向量AB+向量AC),λ属于(0
O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|),λ∈[0
三角形四心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB+AC),λ∈[0,+∞),
O是平面上一个定点,A、B、C是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB除以向量AB的摸+向量A
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP=OA+t(AB+AC),t∈[0,+∞).则P的
已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P
O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|cosB+AC/|AC|co
O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=
向量与三角形的五心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),
已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(向量AB/sinc+向量AC/sinb