线性代数里Ax=0只有零解时,Ax=b为什么可能会有无解的情况?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 08:10:48
线性代数里Ax=0只有零解时,Ax=b为什么可能会有无解的情况?
Ax=0只有零解时,我怎么觉得Ax=b只有唯一解,为什么可能无解,系数矩阵是一样的,Ax=b的增广矩阵只是多出来一列而已啊,行并没变啊,为什么会无解呢?
Ax=0只有零解时,我怎么觉得Ax=b只有唯一解,为什么可能无解,系数矩阵是一样的,Ax=b的增广矩阵只是多出来一列而已啊,行并没变啊,为什么会无解呢?
先举个例子
X1+X2=3
2X1+X2=4
X1+X2=5
系数矩阵的秩为2,增广矩阵的秩为3,原因就是第一个方程与第三个方程冲突.
Ax=0只有零解时,系数矩阵的秩与未知数个数相等,增广矩阵的秩比系数矩阵多了一列,秩只可能大于或等于未知数个数,当增广矩阵的秩与系数矩阵相同时,方程有解,否则无解.举个例子:
X1+X2=3
X1+X2=4
你可以观察得到两个方程有冲突,将增广矩阵线性变换后得:
1 1 3
0 0 1
显然增广矩阵的秩为2,系数矩阵的秩序为1,此时方程组无解,
系数矩阵是:
1 1
0 0
增广矩阵是
1 1 3
0 0 1
X1+X2=3
2X1+X2=4
X1+X2=5
系数矩阵的秩为2,增广矩阵的秩为3,原因就是第一个方程与第三个方程冲突.
Ax=0只有零解时,系数矩阵的秩与未知数个数相等,增广矩阵的秩比系数矩阵多了一列,秩只可能大于或等于未知数个数,当增广矩阵的秩与系数矩阵相同时,方程有解,否则无解.举个例子:
X1+X2=3
X1+X2=4
你可以观察得到两个方程有冲突,将增广矩阵线性变换后得:
1 1 3
0 0 1
显然增广矩阵的秩为2,系数矩阵的秩序为1,此时方程组无解,
系数矩阵是:
1 1
0 0
增广矩阵是
1 1 3
0 0 1
线性代数里Ax=0只有零解时,Ax=b为什么可能会有无解的情况?
线性代数问题:为什么当Ax=0只有零解时,Ax=b没有无穷多解.而不是只有唯一解.
线性代数里Ax=b或者Ax=0当只有唯一解时,系数矩阵A是不是一定可以构成行列式?
线性代数:设A为n阶方阵,若齐次线性方程组Ax=0只有零解则非齐次线性方程组Ax=b解的个数是?
一个非齐次线性方程组AX=b的导出组AX=0只有零解,则AX=b
方程Ax=B的解有如下三种情况 1.A=0 B=0 方程AX=B有无数个解,2.当A=0 B不等于0时方程无解.3.当A
线性代数方面的 为什么列满秩 Ax=b 不一定有解?(秩等于未知数个数)
若线性方程组AX=B中,方程的个数少于未知数的个数,则 “AX=b必有无数解”是错的,是 为什么?
关于x的一元一次方程ax+b=0有无数解的条件是______.
线性代数 行列式设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是( )A.m≥n\x05B.Ax=b(其中b是
线性代数证明题 设a为Ax=0的非零解,b为Ax=b(b不等于0)的解,证明a与b线性无关
方程Ax=B的解有如下三种情形:1.当A=0,B=0时,方程Ax=B有无数个解 2.当A=0,B≠0时,方程Ax=B无解