设a>b>e,证明存在ξ∈(a,b),使b(e^a)-a(e^b)=(1-e^ξ)ξ(b-a)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:50:39
设a>b>e,证明存在ξ∈(a,b),使b(e^a)-a(e^b)=(1-e^ξ)ξ(b-a)
题目有点问题.
例如对a = 3,b = 2.8,可算得(be^a-ae^b)/(b-a) = -34.5278...
但(1-e^x)x在[b,a]上的最大值(1-e^b)b = -43.2450...
因此不存在所要求的ξ.
可以证明存在η ∈ (b,a)使be^a-ae^b = (1-η)e^η(b-a).
考虑函数f(x) = e^x/x,g(x) = 1/x.
可知f(x),g(x)在[b,a]连续,在(b,a)可导,且g'(x) = -1/x²在其中恒不为0.
由Cauchy中值定理,存在η ∈ (b,a)使f'(η)/g'(η) = (f(a)-f(b))/(g(a)-g(b)).
即(1-η)e^η = (be^a-ae^b)/(b-a),也即be^a-ae^b = (1-η)e^η(b-a).
例如对a = 3,b = 2.8,可算得(be^a-ae^b)/(b-a) = -34.5278...
但(1-e^x)x在[b,a]上的最大值(1-e^b)b = -43.2450...
因此不存在所要求的ξ.
可以证明存在η ∈ (b,a)使be^a-ae^b = (1-η)e^η(b-a).
考虑函数f(x) = e^x/x,g(x) = 1/x.
可知f(x),g(x)在[b,a]连续,在(b,a)可导,且g'(x) = -1/x²在其中恒不为0.
由Cauchy中值定理,存在η ∈ (b,a)使f'(η)/g'(η) = (f(a)-f(b))/(g(a)-g(b)).
即(1-η)e^η = (be^a-ae^b)/(b-a),也即be^a-ae^b = (1-η)e^η(b-a).
设a>b>e,证明存在ξ∈(a,b),使b(e^a)-a(e^b)=(1-e^ξ)ξ(b-a)
请教一道证明题如图图片文字:设b>a>e, 证明存在一个ξ∈(a,b),使be^a-ae^b=(1
设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得
线性代数证明设方阵B=(E+A)-1(E-A)证明:(E+B)(E+A)=2E
设A(A+B)=E,证明AB=BA
请教一道高数的证明题设b>a>e,证明(a^b)>(b^a)
证明逆矩阵存在已知 设n阶方阵A,B满足 AB=A+B 证明 A-E 可逆AB- A- B=0B(A-E)=AB=A(A
设A ,B为n阶矩阵,AB=A+B,怎么推出(A-E)(B-E)=E?
b>a>0,证明存在一个s属于(a,b)使a×e∧b-b×e∧a=e∧s×(1-s)×(a-b)
A ,B为二阶方阵,且2A^(-1)B=B-4E.证明:A-2E可逆.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f