设函数f(x)=sinx+cosx和g(x)=2sinxcosx.若存在x属于[0,π/2],使得af(x)-g(x)-
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 22:28:35
设函数f(x)=sinx+cosx和g(x)=2sinxcosx.若存在x属于[0,π/2],使得af(x)-g(x)-2/7>=0成立,求a的取值范围
现有的回答不对.
af(x)-g(x)-2/7
=a(sinx+cosx)-2sinxcosx-2/7
=a(sinx+cosx)-[(sinx+cosx)²-1]-2/7
=-(sinx+cosx)²+a(sinx+cosx)+5/7
令t=sinx+cosx,由x∈[0,π/2],t=sinx+cosx=√2sin(x+π/4),得t∈[1,√2]
af(x)-g(x)-2/7>=0成立 (x∈[0,π/2]) 化为 -t²+at+5/7>=0成立 (t∈[1,√2]),
于是有 a>=t-5/7t (t∈[1,√2])
构造函数y(t)=t-5/7t (t∈[1,√2]),求导y'=1+1/t²>0,因此函数y(t)在[1,√2]区间单调递增,因此函数y(t)最小值为y(1)=2/7,故a的取值范围为 a>=2/7
af(x)-g(x)-2/7
=a(sinx+cosx)-2sinxcosx-2/7
=a(sinx+cosx)-[(sinx+cosx)²-1]-2/7
=-(sinx+cosx)²+a(sinx+cosx)+5/7
令t=sinx+cosx,由x∈[0,π/2],t=sinx+cosx=√2sin(x+π/4),得t∈[1,√2]
af(x)-g(x)-2/7>=0成立 (x∈[0,π/2]) 化为 -t²+at+5/7>=0成立 (t∈[1,√2]),
于是有 a>=t-5/7t (t∈[1,√2])
构造函数y(t)=t-5/7t (t∈[1,√2]),求导y'=1+1/t²>0,因此函数y(t)在[1,√2]区间单调递增,因此函数y(t)最小值为y(1)=2/7,故a的取值范围为 a>=2/7
设函数f(x)=sinx+cosx和g(x)=2sinxcosx.若存在x属于[0,π/2],使得af(x)-g(x)-
设函数f(x)=sinx+cosx和g(x)=2sinxcosx.若a为实数,求函数F(x)=f(x)+ag(x),x∈
设f(x)=min{sinx,cosx},g(x)=max{sinx,cosx},x属于[0,2],函数f(x)和g(x
设函数fx=sinx+cosx和gx=2sinxcosx 若a为实数,求Fx=af(x)+g(x),x属于[0,π/2]
设x∈【0,π/2】,f(x)=sin(cosx),g(x)=cos(sinx),把0,1,f(x)的最大值和g(x)的
f(x)=sin2x与g(x)=2sinxcosx是不是同一函数?f(x)=cos2x与g(x)=cosx^2-sinx
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
设X属于{0,π/2}.f(x)=sin(cosX),g(x)=cos(sinx)求f(x)和g(x)的最大值和最小值.
已知函数f(x)=3-2cosx-2sinx,其中x∈[0,2π],设g(x)=(sinx-1)/f(x),求函数g(x
已知函数f(x)=sinx与g(x)=cosx,x∈﹙0,2π﹚,求不等式f(x)≤g(x)的解集
设a,b均为大于1的自然数,函数f(x)=a(b+sinx),g(x)=b+cosx,若存在实数m,使得f(m)=g(m
设函数f(x)=(a-sinx)(cosx+a),x属于[0,pai/2],是否存在常数a,使函数f(x)的最小值为-1