n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:23:21
n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=an+a1,求r(B)
...中间是b2=a2+a3 b3=a3+a4.bn=an+a1 答案是n为奇数时r(B)=n,n为偶数时r(B)=n-1实在是不理解为什么n为偶数是秩为n-1
...中间是b2=a2+a3 b3=a3+a4.bn=an+a1 答案是n为奇数时r(B)=n,n为偶数时r(B)=n-1实在是不理解为什么n为偶数是秩为n-1
n为偶数时:b1-b2+b3-b4+……-bn=0 ∴﹛b1,b2,……bn﹜线性相关.
设k1b1+k2b2+……+k﹙n-1﹚b﹙n-1﹚=0
即k1a1+﹙k1+k2﹚a2+﹙k2+k3﹚a3+……+﹙k﹙n-2﹚+k﹙n-1﹚a﹙n-1﹚+k﹙n-1﹚an=0
∵矩阵A非奇异,∴﹛a1,a2,……an﹜线性无关.
k1=0 ,k1+k2=0 ,k2+k3=0 ,…… ,k﹙n-2﹚+k﹙n-1﹚=0 ,k﹙n-1﹚=0
得到 k1=k2=k3=……=k﹙n-1﹚=0 即﹛b1,b2,……b﹙n-1﹚﹜线性无关.
∵﹛b1,b2,……bn﹜线性相关.﹛b1,b2,……b﹙n-1﹚﹜线性无关.
∴﹛b1,b2,……bn﹜的秩为n-1.
设k1b1+k2b2+……+k﹙n-1﹚b﹙n-1﹚=0
即k1a1+﹙k1+k2﹚a2+﹙k2+k3﹚a3+……+﹙k﹙n-2﹚+k﹙n-1﹚a﹙n-1﹚+k﹙n-1﹚an=0
∵矩阵A非奇异,∴﹛a1,a2,……an﹜线性无关.
k1=0 ,k1+k2=0 ,k2+k3=0 ,…… ,k﹙n-2﹚+k﹙n-1﹚=0 ,k﹙n-1﹚=0
得到 k1=k2=k3=……=k﹙n-1﹚=0 即﹛b1,b2,……b﹙n-1﹚﹜线性无关.
∵﹛b1,b2,……bn﹜线性相关.﹛b1,b2,……b﹙n-1﹚﹜线性无关.
∴﹛b1,b2,……bn﹜的秩为n-1.
n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=a
设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=
不用向量组内积等知识,求证设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)列向量*(b1,b2.bn
矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Sch
设向量a=(a1,a2,……an)T,b=(b1,b2...bn)T 都是非零向量,且aT*b=0,记n阶矩阵A=a*b
设3×2矩阵A=(a1,a2),B=(b1,b2),其中a1,a2,b1,b2是3维列向量,若a1,a2
设U是正交矩阵,a1,a2,...,an是U的列向量,b1,b2,...,bn是U的行向量,则当i 不等于j, =什么?
设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
设向量a=(a1,a2,……an)的转置,b=(b1,b2...bn)的转置 都是非零向量,且a的转置*b=0,记n阶矩
矩阵|a1+b1 a1+b2.a1+bn;a2+b1 a2+b2.a2+bn;.an+b1 an+b2.an+bn|等于
已知{an}是首项为a1=1的等差数列且满足a(n+1)>an,等比数列{bn}的前三项分别为b1=a1+1,b2=a2
设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,A