圆锥曲线(椭圆)已知椭圆C的中心在原点,一个焦点F(0,√2),且长轴长与短轴长的比是√2:1(1)求椭圆的方程.(2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 19:56:47
圆锥曲线(椭圆)
已知椭圆C的中心在原点,一个焦点F(0,√2),且长轴长与短轴长的比是√2:1
(1)求椭圆的方程.
(2)过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值.
(3)求三角形PAB面积的最大值.
P是椭圆上横坐标为1的第一象限内的点。
已知椭圆C的中心在原点,一个焦点F(0,√2),且长轴长与短轴长的比是√2:1
(1)求椭圆的方程.
(2)过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值.
(3)求三角形PAB面积的最大值.
P是椭圆上横坐标为1的第一象限内的点。
(1)求椭圆方程
由已知可得
a:b=√2:1
a²=b²+(√2)²
解得a²=4,b²=2
∴椭圆方程为x²/2+y²/4=1
(2)证:直线AB的斜率为定值.
由已知,P点坐标为(1,√2),若PA的斜率为k,那么PB的斜率为-k.其方程分别为:
y=k(x-1)+√2; y=-k(x-1)+√2,
分别代入椭圆方程,得:
(k²+2)x²-(2k²-2√2k)x+(k²-2√2k-2)=0
(k²+2)x²-(2k²+2√2k)x+(k²+2√2k-2)=0
由于x=1是以上两个方程的解,所以将这两个方程分解因式得
(x-1)[(k²+2)x-(k²-2√2k-2)]=0
(x-1)[(k²+2)x-(k²+2√2k-2)]=0
所以x1=(k²-2√2k-2)/(k²+2),x2=(k²+2√2k-2)/(k²+2)
所以直线AB的斜率为:
(y2-y1)/(x2-x1)
=[-k(x2-1)+√2-k(x1-1)-√2]/(x2-x1)
=[2-(x1+x2)]k/(x2-x1)
=[2-2(k²-2)/(k²+2)]k/[2*2√2k/(k²+2)]
=[2-2(k²-2)/(k²+2)]k/[2*2√2k/(k²+2)]
=√2
直线AB的斜率为定值√2得证.
(3)求三角形PAB面积的最大值
令A点坐标为(√2cosa,2sina),直线AB方程为y-2sina=√2(x-√2cosa),
P到AB的距离PD为|√2-√2+2sina-2cosa|/√3=(2/√3)*|sina-cosa|
AB的距离为|x1-x2|*√(1+k^2)=√3*|x1-x2|,
把方程y-2sina=√2(x-√2cosa),代入椭圆方程,得
x^2+√2(sina-cosa)-2sinacosa=0,
x1=√2cosa,x2=-√2sina
于是PAB的面积=(1/2)*|PD|*|AB|
=(1/2)*√3*√2|sina+cosa|*(2/√3)|sina-cosa|
=√2|sina^2-cosa^2 |,
所以面积最大值为√2.
经验之谈:在涉及到椭圆的求最大值、最小值问题,一般把椭圆用参数方程表示是捷径,甚至在高中范围内是唯一方法.
由已知可得
a:b=√2:1
a²=b²+(√2)²
解得a²=4,b²=2
∴椭圆方程为x²/2+y²/4=1
(2)证:直线AB的斜率为定值.
由已知,P点坐标为(1,√2),若PA的斜率为k,那么PB的斜率为-k.其方程分别为:
y=k(x-1)+√2; y=-k(x-1)+√2,
分别代入椭圆方程,得:
(k²+2)x²-(2k²-2√2k)x+(k²-2√2k-2)=0
(k²+2)x²-(2k²+2√2k)x+(k²+2√2k-2)=0
由于x=1是以上两个方程的解,所以将这两个方程分解因式得
(x-1)[(k²+2)x-(k²-2√2k-2)]=0
(x-1)[(k²+2)x-(k²+2√2k-2)]=0
所以x1=(k²-2√2k-2)/(k²+2),x2=(k²+2√2k-2)/(k²+2)
所以直线AB的斜率为:
(y2-y1)/(x2-x1)
=[-k(x2-1)+√2-k(x1-1)-√2]/(x2-x1)
=[2-(x1+x2)]k/(x2-x1)
=[2-2(k²-2)/(k²+2)]k/[2*2√2k/(k²+2)]
=[2-2(k²-2)/(k²+2)]k/[2*2√2k/(k²+2)]
=√2
直线AB的斜率为定值√2得证.
(3)求三角形PAB面积的最大值
令A点坐标为(√2cosa,2sina),直线AB方程为y-2sina=√2(x-√2cosa),
P到AB的距离PD为|√2-√2+2sina-2cosa|/√3=(2/√3)*|sina-cosa|
AB的距离为|x1-x2|*√(1+k^2)=√3*|x1-x2|,
把方程y-2sina=√2(x-√2cosa),代入椭圆方程,得
x^2+√2(sina-cosa)-2sinacosa=0,
x1=√2cosa,x2=-√2sina
于是PAB的面积=(1/2)*|PD|*|AB|
=(1/2)*√3*√2|sina+cosa|*(2/√3)|sina-cosa|
=√2|sina^2-cosa^2 |,
所以面积最大值为√2.
经验之谈:在涉及到椭圆的求最大值、最小值问题,一般把椭圆用参数方程表示是捷径,甚至在高中范围内是唯一方法.
圆锥曲线(椭圆)已知椭圆C的中心在原点,一个焦点F(0,√2),且长轴长与短轴长的比是√2:1(1)求椭圆的方程.(2)
已知椭圆C的中心在原点,一个焦点F(0,√2),长轴长比短轴长√2比1,(1)椭圆方程
椭圆:16,已知椭圆C的中心在原点,一个焦点为F(-2,0),且长轴与短轴长的比是2:√3.
已知椭圆C中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2比根号3,求椭圆C的方程.
已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2∶√3
椭圆与双曲线检测题已知椭圆的中心在原点,离心率为1/2,一个焦点是F(-m,0)(m是大于0的常数)(1)求椭圆的方程
已知椭圆c的中心在坐标原点,长轴长为4,且抛物线y方=4x的准线领过椭圆的一个焦点,求椭圆方程,2,设过焦点f的直线y=
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.求椭圆C的方程
已知椭圆C的中心在坐标系xOy的坐标原点,离心率为1/2,一个焦点为F(-1,0).(1)求椭圆C的
已知椭圆C的中心在坐标原点,左顶点A(-2,0)离心率e=1/2,F为右焦点求椭圆方程
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0),为其右焦点.(1)求椭圆c的方程(2)是...
圆锥曲线的题已知以坐标原点为中心,焦点在X轴上的椭圆E经过E(2,3),且离心率为1/2.1.求椭圆方程.2.设椭圆的左