设函数f(x),g(x)分别是R上的奇函数,偶函数.且满足f(x)-g(x)=e^x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:34:55
设函数f(x),g(x)分别是R上的奇函数,偶函数.且满足f(x)-g(x)=e^x
(1)求f(x)和g(x)的解析式
(2)试比较f(2),f(3),g(0)的大小
(1)求f(x)和g(x)的解析式
(2)试比较f(2),f(3),g(0)的大小
(1).
∵f(x)=e^x+g(x)
又∵f(x)=-f(-x)=-[e^(-x)+g(-x)]=-e^(-x)-g(x)
∴f(x)=[e^x-e^(-x)]/2
同理:g(x)=-[e^x+e^(-x)]/2
(2).
f(2)=(e²-e-²)/2
f(3)=(e³-e-³)/2
∵e³>e²
∴e-³-e²
∴f(3)>f(2)>0
g(0)=-1
∴f(3)>f(2)>g(0)
∵f(x)=e^x+g(x)
又∵f(x)=-f(-x)=-[e^(-x)+g(-x)]=-e^(-x)-g(x)
∴f(x)=[e^x-e^(-x)]/2
同理:g(x)=-[e^x+e^(-x)]/2
(2).
f(2)=(e²-e-²)/2
f(3)=(e³-e-³)/2
∵e³>e²
∴e-³-e²
∴f(3)>f(2)>0
g(0)=-1
∴f(3)>f(2)>g(0)
设函数f(x),g(x)分别是R上的奇函数,偶函数.且满足f(x)-g(x)=e^x
若函数f(x),g(x)分别是R上的奇函数,偶函数且函数满足f(x)+g(x)=1/e^x,则命题
若函数f(x)和g(x)分别是R上的奇函数和偶函数,且满足f(x)-g(x)=e的x次幂
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,则有()
若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x
若函数f(x),g(x)分别为R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,则
若函数f(x),g(x)分别为R上的奇函数.偶函数,且满足f(x)-g(x)=e^x,则有
若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=e^x,比较g(-3),f(3),f(e)
若函数f(x),g(x)分别是R上的奇函数,偶函数且满足f(x)-g(x)=2的x次方 则有( )
若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x
若函数f(x)和g(x)分别是R上的奇函数和偶函数,且满足f(x)-g(x)=e的x次幂,则f(2),f(3),g(0)
若函数f(x)g(x)分别是R上的奇函数、偶函数且满足fx=gx=e^x