作业帮 > 数学 > 作业

1已知数列{an}前n项和为Sn,a1=1,n*S(n+1)-(n+1)*Sn=n²+cn(c∈R,n∈N*)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:38:56
1已知数列{an}前n项和为Sn,a1=1,n*S(n+1)-(n+1)*Sn=n²+cn(c∈R,n∈N*)且S1,S2/2,S3/3成等差数列
求(1)求c的值
(2)求数列{an}的通项公式
2设数列{an}满足a1=2,a(n+1)-an=3*2^2n-1
(1)求数列{an}通项公式
(2)令bn=n*an,求数列{bn}前n项和Sn
3数列{an}中,其前n项和Sn满足S(n+1)=2Sn+1且a1=1
(1)求数列{an}的通项公式an
(2)设数列{n*an}前n项和为Tn,求Tn
1已知数列{an}前n项和为Sn,a1=1,n*S(n+1)-(n+1)*Sn=n²+cn(c∈R,n∈N*)
1(1)a1 = S1 = 1
S2 -2S1 = c+1
2S3 - 3S2 = 4 +2c
S1 + S3/3 = 2* S2/2
c = -5
(2) 下班回去算
再问: 第一问貌似不对头啊~~
再答: 不好意思,算错了,应该是c = 1 接着来: (2)因为S(n+1) - Sn = a(n+1) 所以:n a(n+1) - Sn = n^2 +n (n-1)an - S(n-1) = (n-1)^2 + (n-1) 两式相减: n a(n+1) - (n-1)an - an = 2n a(n+1) - an = 2 所以an是公差为2的等差数列: an = 2n-1 2. (1) 因为: a(n+1)-an=3*2^(2n-1) 所以: an-a(n-1)=3*2^(2n-3) ... a3-a2=3*2^3 a2-a1=3*2^1 上述各项相加: an-a1=3[2^1+2^3+2^5+2^7+...+2^(2n-3)] =3*2*[2^(2n-2)-1]/(2^2-1) =2^(2n-1)-2 因此: an=2^(2n-1) (2) bn=n*2^(2n-1) Bn = 1* 2^1 + 2*2^3 + 3* 2^5 +........+ n*2^(2n-1) 4Bn = 1* 2^3 + 2*2^5 +.........+(n-1)2^(2n-1) + n*2^(2n+1) 上述两式相减: -3Bn = 1* 2^1 +(2^3+2^5.......+(2n-1)) - n*2^(2n+1) Bn = n*2^(2n+1)/3 - 2^(2n+1)/9 - 2/9 3. (1) S(n+1)=2Sn+1 a(n+1)= Sn+1 an= S(n-1)+1 a(n+1) - an = an a(n+1) = 2an 所以是等比 an = 2^(n-1) (2) bn=n*an = n 2^(n-1) Tn = 1*2^0 + 2*2^1+.......+ (n-1)2^(n-2)+n 2^(n-1) 2Tn = 1*2^1+........+(n-2)2^(n-2)+(n-1)2^(n-1)+n 2^n -Tn = 1 + 2+...........+2^(n-2)+2^(n-1)-n 2^n Tn = (n-1)2^n +1 累死我了,敲的手都酸了!