作业帮 > 数学 > 作业

(高一)若x满足2(log(1/2)x)^2-14log(4)x+3≤0,求f(x)=[log(2)(x/2)]*{lo

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:48:23
(高一)若x满足2(log(1/2)x)^2-14log(4)x+3≤0,求f(x)=[log(2)(x/2)]*{log(√2)[(√x)/2]}的最大值和最小
若x满足2(log(1/2)x)^2-14log(4)x+3≤0,求f(x)=[log(2)(x/2)]*{log(√2)[(√x)/2]}的最大值和最小值,并求此时x的值.
rt
(高一)若x满足2(log(1/2)x)^2-14log(4)x+3≤0,求f(x)=[log(2)(x/2)]*{lo
2(log(1/2)x)^2-14log(4)x+3≤0
2(log(2)x)^2-7log(2)x+3≤0
=> 1/2≤log(2)x≤2
log(2)√2≤log(2)x≤log(2)8
∴√2≤x≤8
f(x)=2log(2)(x/2)-log(2)[(√x)/2]
又∵f(x)在[√2,8]上递增
∴f(x)min=f(√2)=3/4
f(x)max=f(8)=2