作业帮 > 数学 > 作业

数列{an}是以a1=4为首项的等比数列,且S3,S2,S4成等差数列

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:00:36
数列{an}是以a1=4为首项的等比数列,且S3,S2,S4成等差数列
(1)求{an}通项公式
(2)设bn=log2|an|,Tn为数列{1/bn*bn+1}的前n项的和,求Tn
数列{an}是以a1=4为首项的等比数列,且S3,S2,S4成等差数列
1.
2S2=S3+S4
2S2=S2+A3+S2+A3+A4
2A3+A4=0
A4/A3=-2
An=A1×q^n=4×(-2)^(n-1)=(-2)^(n+1)
2.
|An|=|(-2)^(n+1)|=2^(n+1)
Bn=log2|An|=log2(2^(n+1)=n+1
1/(Bn×B(n+1)=1/((n+1)×(n+1+1))=((n+2)-(n+1))/((n+1)(n+2))=1/(n+1)-1/(n+2)
Tn=(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/(n+1)-1/(n+2))
=1/2-1/(n+2)
=n/(2(n+2))