作业帮 > 数学 > 作业

定义:定点与⊙O上任意一点之间距离的最小值称为点与⊙O之间的距离.现有一矩形ABCD如图所示,AB=14,BC=12,⊙

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 03:14:21
定义:定点与⊙O上任意一点之间距离的最小值称为点与⊙O之间的距离.现有一矩形ABCD如图所示,AB=14,BC=12,⊙
连接OE、OF,则OE⊥AB,OF⊥BC;
又∠B=90°,且OE=OF,∴四边形OEBF是正方形;
∴OE=OF=BF=BE=
1
2 BC=6;
∴AE=AB-BE=8;
连接OA,交⊙O于H;
Rt△AOE中,OE=6,AE=8;由勾股定理得:OA=10,
∴AH=OA-OH=10-6=4;
即点A与⊙O之间的距离为4.