作业帮 > 数学 > 作业

(创新探究题)P是四边形ABCD内一点,PA=PB=PC=PD,又AB=CD,试确定四边形ABCD的形状,并加以证明.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:10:32
(创新探究题)P是四边形ABCD内一点,PA=PB=PC=PD,又AB=CD,试确定四边形ABCD的形状,并加以证明.
(创新探究题)P是四边形ABCD内一点,PA=PB=PC=PD,又AB=CD,试确定四边形ABCD的形状,并加以证明.
如图:四边形ABCD是等腰梯形或矩形.
证明如下:
∵PA=PB=PC=PD,AB=CD,
∴△PAB≌△PDC,
∠PAB=∠PBA=∠PCD=∠PDC.
又∵∠PDA=∠PAD,
∴∠BAD=∠CDA.
同理∠ABC=∠DCB.
于是∠BAD+∠ABC=
1
2×360°=180°,
∴AD∥BC.
故当∠ABC≠90°时,四边形ABCD是等腰梯形;
当∠ABC=90°时,四边形ABCD是矩形.