(2x 1)^4=a0 a1x a2x^2 a3x^3 a4x^4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:02:52
显然a=5.另外,线性方程组的通解的表示方式不是唯一的特解与基础解系都不唯一只要将特解代入后无误,基础解系(是解,线性无关)含2个向量就可以
增广矩阵=1111512-14-22-3-1-5-2312110用初等行变换化为1000101002001030001-1方程组有唯一解:(1,2,3,-1)^T.
您给的线性规划问题好像没有可行解哦.比如第二个约束可知:x1≥4,从第三个约束可知x2≥3所以x1+x2≥7和你的第一个约束矛盾.对偶问题在图片里.
1x1/2+1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6+1/6x1/7=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/9-1/7=1-1/7=6/
根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2
方程3x²-4x=-1可化为:3x²-4x+1=0由根与系数的关系,有x1+x2=4/3,x1x2=1/3∴x2/x1+x1/x2=(x1²+x2²)/(x1x
写出增广矩阵为11112122142114β第2行减去第1行,第3行减去第1行×211112011020-1-12β-4第1行减去第2行,第3行加上第2行10010011020002β-2第3行除以2
X1+2X2+3X3=4.(1)3X1+5X2+7X3=9.(2)2X1+3X2+4X3=5.(3),(1)+(2)-(3)*2,得:X2+2X3=3即:X2=3-2X3,代入(1):得:X1=X3-
齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||
x1+x2=4①x2+x3=6②x3+x1=2③得x2-x1=4④④+①得2x2=4x2=2代入①得x1=2x1=2代入③得x3=0所以x1=2x2=2x3=0再问:你算错了再答:对不起啊,我看错了。
x1=3/2;x2=x1/2;printf("%f\n",x1);你会发现x1就等于1因为x1=3/2;3和2都是整型,除下来结果也为整型,是1,然后赋值给float,变成1.0
1x1\3=1/2*(1/1-1/3)2x1\4=1/2*(1/2-1/4).1x1\3+2x1\4+3x1\5+.+2006x1\2008=1/2(1/1-1/3+1/2-1/4+1/3-1/5+.
容易啊,由第一个式子变形,把X0当未知数解出(用含X1的式子表达),然后将这个X0代入第二个式子
增广矩阵=21-1-11211-11421-22r2-r1,r3-2r121-1-110020000300r2*(1/2).r1+r2,r3-3r2210-110010000000通解为:(0,1,0
这里的自由未知量是x3取x3=0,代入等价方程组得一个特解:(3,-8,0,6)^T对应的齐次线性方程组的等价方程为x1=-x3;x2=2x3;x4=0即令等式右边的常数都为0得到的取x3=1得基础解
方程组有唯一解,不是无解请确认题目是否有误再问:想看看步骤.......再答:解:增广矩阵=42-123-121011038r1+2r21003223-121011038r3-r11003223-12
至少我这里没有任何问题如果你有问题给具体的提示文字
应该是(x1^2)+2(x2^2)+3(x3^2)+4(x1x2)-4(x2x3)=(x1^2)+2(x2^2)+3(x3^2)+2(x1x2)-2(x2x3)+2(x2x1)-2(x3x2)所以A=
系数行列式21-11200142-21化简后为4001秩为321-1-1200-1增广矩阵为21-1112001042-212化简后为40010秩为321-1-11200-10所以两个矩阵的秩都为3且