三个特征值为1-23 A* 3A 2E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:14:17
设g(x)=x^3-2x^2由定理知g(-1)=-3,g(1)=-1,,g(2)=0是g(A)=B的特征值满意请采纳^_^
A的3个特征值为2,-1,1,所以|A|=2*(-1)*1=-2,不等于0,故A可逆所以A*=|A|A^-1=-2A^-1,A+A^2+A*=A+A^2-2A^-1,设f(A)=A+A^2-2A^-1
首先要注意a1,a2,a3线性无关,然后(b,Ab,A^2b)=(a1,a2,a3)*V,其中V=1x1x1^21x2x2^21x3x3^2是Vandermonde矩阵,由于x1,x2,x3互不相同,
反证法.如果它们线性相关,即存在不全为零的实数p,q,r使得pb+qAb+rA^2b=0,将b=a1+a2+a3代入并且由a1,a2,a3是对应于t1,t2,t3的特征值可得:p(a1+a2+a3)+
有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值
实对称矩阵属于不同特征值的特征向量彼此正交所以A的属于特征值5的特征向量与(1,1,1)正交即满足x1+x2+x3=0解得基础解系:a1=(1,-1,0)',a2=(1,0,-1)'所以A的属于特征值
根据题设,a1,a2,a3满足(根据特征向量定义)(A-E)a1=0(A-E)a2=0(A-2E)a3=0对于矩阵2E-A,他的特征值为1,1,0(因为A-2E的特征值是A的特征值-2,为-1,-1,
知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点
你说的完全正确,每个特征向量乘任意非零倍数后仍是特征向量,所以P-1AP不会改变.但调整特征向量顺序后,对角阵中特征值顺序也要做同样调整,例如你的问题应当写为,P-1AP=diag(λ3,λ2,λ1)
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
因为A的特征值为-1,1,2,所以f(A)=2A3-3A2的特征值为:f(-1)=-5,f(1)=-1,f(2)=4,从而|2A3-3A2|=(-5)•(-1)•4=20.故答案为:20.
您好!A的三个特征向量互不相同,所以A可对角化,存在可逆矩阵P使得A=P*diag{1,2,3}*P^(-1).所以A+E=P*diag{1,2,3}*P^(-1)+P*P^(-1)=P*(diag{
A*=|A|A^(-1)|A|=1×2×3=6A*=6A^(-1)所以特征值为6×1/1=66×1/2=36×1/3=2
A^2+2A+3E的特征值为1.1²+2+3=62.(-1)²-2+3=1-2+3=23.2²+2×2+3=4+4+3=11即特征值为:6,2,11.再问:E呢?为什么用
先告诉你一个定理吧:若x是A的特征值,则f(x)是f(A)的特征值.(其中f(x)是x的多项式,f(A)矩阵A的多项式)那么你的问题答案就显而易见了,f(x)=x+x^2;所以B的特征值为飞f(1)、
三阶方阵A的3个特征值为1,2,-4,则A(-1次方)的三个特征值1,1/2,-1/4.请楼主参考!
A2的特征值为1,1,4A2+2E的特征值为3,3,6
|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2
a3,3a2,4a3线性相关,P不可逆!再问:再问:书上题目错了嘛,。再答:确实是错了再答:应该有a1