A为3阶矩阵,λ1=2,λ2=3,λ3=-4为A的三个特征值,对应特征向量依次为a1,a2,a3.
A为3阶矩阵,λ1=2,λ2=3,λ3=-4为A的三个特征值,对应特征向量依次为a1,a2,a3.
A为三阶矩阵,λ1,λ2,λ3为三个特征值,对应特征向量a1,a2,a3,
设3阶矩阵A的特征值为1,2,-3,a1,a2,a3依次对应的特征向量设方阵B=A*-2A+3I,求B^-1的特征值及d
设A为3阶方阵,x1,x2,x3是A的三个不同特征值,对应特征向量分别为a1,a2,a3,令b=a1+a2+a3.
已知三阶矩阵A的特征值为1,2,3 对应的特征向量分别为a1,a2,a3,令P=(3a3,2a2,a1),则P^(-1)
设t1,t2,t3为3阶矩阵A的三个互不相同的特征值,相应的特征向量依次为a1,a2,a3,令b=a1+a2+a3,证明
设三阶矩阵A的三个特征值为1,1,2,且a1,a2,a3分别为对应的特征向量,则
已知3阶实对称矩阵A的3个特征值a1=0,a2=a3=2,且特征值0对应的特征向量为(1,0,-1)^T,求矩阵A
线性代数:设3阶实对称矩阵A的特征值为a1=-1,a2=a3=1,对应于a1的特征向量为b1=(0,0,1)T,求矩阵A
已知3阶矩阵A的3个特征值为1,1,2,对应的特征向量为a1=【1 2 1】,a2=【1 1 0】,a3=【2 0 -1
设A为3阶矩阵,a1,a2分别为A的属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2,a3线
老师您好.设A为3阶矩阵,λ1=1,λ2=-1,λ3=2是A的三个特征值,对应的特征向量依次为α1,α2,α3,记P=