三角形ABC中,F,G分别是AC,BC,OCA=30

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:38:06
三角形ABC中,F,G分别是AC,BC,OCA=30
如图在三角形abc中,ad是高,ef∥bc,ef分别交ab,ac,ad于点e.f.g,ag:gd=3:2

(1)因为EF∥BC那么可以得出△AEF≌△ABC那么EF:BC=AG:AD=3:(3+2)=3:5(2)S△AEF:S△ABC=(1/2*EF*AG):(1/2*BC*AD)=(EF*AG):(BC

如图,三角形ABC中,点D是AC上一点,BE平行AC,BE、AD、AE分别交BD、BC于点F、G

1、显然没有!可以证明的;图中所有可能的三角形,都没有可以固定的的60度角;因为D点和E点是可以随便改变的,而且主三角形ABC也是可以变化的,所以在这种条件下不可能可能得到一个全等三角形;而只能有相似

如图,已知:三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点,证明FG垂直DE

连DGFGDGFG直角三角形中线DG=FG=1/2BCGF是等腰三角形中线三线合一FG垂DE

如下图 在三棱柱ABC=A1B1C1中 三角形ABC与三角形A1B1C1都为正三角形且AA1⊥面ABC F.F1分别是A

证明1:由题意可知,在平面ACC1A1上,直线AF∥直线C1F1,且直线AF=直线C1F1,所以四边形AFC1F1为平行四边形,即直线AF1∥直线FC1,所以直线FC1∥平面AF1B1同理,在平面F1

已知在三角形ABC中,BC,AC上的高AD,BE相交于H,F,G分别是AC BH的中点,求证DG垂直DF

∵AD⊥DCF为AC中点∴AF=FD∴角FAD=角FDA∵AD⊥BCG为BH中点∴DG=GB∴角GBD=角GDB∵BE⊥ACAD⊥BC∴角C+角DAF=90°角C+角EBC=90°角HDG+BDG=9

如图,在三角形ABC中,分别延长中线BD、CE到点F、G,使DF=BD,EG=CE.是说明∠GAF是平角.

因为AD=DC,BD=DF,角ADF=角BDC,所以△ADF全等于△CDB,所以角BCD=角FAD,同理角EAG=角EBC,故角EAG+角BAC+角FAD=角EBC+角BCD+角BAC=180度

如图,三角形ABC中,中线BD,CE交于O,F、G分别是OB、OC的中点,求证四边形DEFG为平行四边形

由E、D分别是AC、AB中点可得ED=1/2BC,且ED∥BC,理由是中位线,你懂.同理可得GF=1/2BC,GD∥BC,所以ED=GF,且ED∥GF,所以就是平行四边形了,你懂的

如图,已知在三角形ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.

连接AO在三角形ABO,ACO中DF,EG分别是中位线,各自都平行等于AO的一半所以DF平行等于EG所以四边形DFGE是平行四边形

在三角形ABC中,AB,BC,CA的中点分别是E,F,G,AD是高.求证:角EDG=角EFG.

连接EG∵AB、BC、CA的中点分别是E、F、G∴EF=½AC,FG=½AB∵AD是高∴⊿ABD,⊿ACD是直角三角形∴DE=½AB,DG=½AC∴DE=FG,

如图,已知三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点.试探索FG

因为CE为AB上的高所以三角形BCE为直角三角形所以F为BC的中点所以EF=1/2*BC同理DF=1/2*BC所以EF=DF所以三角形FED为等腰三角形所以G为DE中点所以GF垂直DE

在三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点.求证:FG垂直于DE .

证明:连结GE、GD,则因为CE⊥BE,CD⊥BD,G为BC中点所以GE=GD=BC/2(直角三角形斜边的中线等于斜边的一半)因为F为DE中点,GE=GD所以FG⊥DE(等腰三角形的中线垂直于底边)

如图所示,在三角形ABC中,BD,CE相交于O,F,G分别为OB,OC的中点.是说明四边形DEFG是平行四边形

BD、CE是中线,则结论就成立.证明:DE是ΔABC的中位线,∴DE∥AB,且DE=1/2AB,FG是ΔOAB的中位线,∴FG∥AB,且FG=1/2AB∴DE∥FG,且DE=FG∴四边形DEFG是平行

如图,在三角形ABC中,AD垂直BC于D,E,F,G分别是BC,CA,AB的中点.求证:四边形是等腰梯形

证明:首先ED//与FG,故DFGE是一个梯形,腰为EG、DF,因为EG为中位线,所以EG为AC之半所以EG=FA,又AD垂直BC,所以直角三角形ADC中,DF为斜边AC上的中线,因此为AC之半,即D

在三角形ABC中abc分别是

你的题不全啊怎么回答啊

在三角形ABC中,D是AB上的一点,且BD=AC,E,F分别是BC,AD的中点,EF的延长线交CA的延长线于G,求证:A

证明提示:取CD的中点M,连接ME、MF显然EM是三角形BCD的中位线所以EM//BD且EM=BD/2同理FM//AC且FM=AC/2因为BD=AC所以EM=FM所以∠MEF=∠MFE但∠G=∠MFE

在三角形ABC中,BF,CF分别是三角形ABC两个外角的角平分线,且角F=40度,则较A=?

∵∠F=40°∴∠FBC+∠FCB=180-40=140°∴∠ABC+∠ACB=2×180-2×140=80°∴∠A=180-80=100°

BD,CE分别是三角形ABC中AC,BD边上的高,G,F分别是BC,DE的中点,证明:FG⊥DE

连EG,DG利用直角三角形斜边上的中线等于斜边的一半,可得EG=1/2BC,DG=1/2BCEG=DG三角形DGE是等腰三角形F是DE中点,用三线合一FG垂直于DE

三角形abc中bd、ce是高,g、f分别是bc、de的中,求证fg垂直de

连结EG和DG,BD⊥AC,CE⊥AB,G是BC中点,则EG和DG分别是RT△BCE和RT△BDC的中线,EG=BC/2,DG=BC/2,∴EG=DG,△EDG是等腰△,EF=DF,FG是△EDG的中

1.如图所示,三角形ABC中,BD、CE是高,F、G分别是DE、BC中点,求证:FG垂直于DE (提示:连接GE和GD)

1、证明:连接EG和DG,则:EG和DG分别直角三角形BCE和直角三角形BCD的斜边中线.所以:EG=EG=(1/2)BC所以:三角形EGD是等腰三角形,而F是ED的中点,即FG是等腰三角形EGD底边