三角形ABC角A,B,C的对边分别为a,b,c且满足cosA 2=2根号5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:09:03
答(1)cosB/cosC=-sinB/(2sinA=sinC)2sinAcosB+sinCcosB=-cosCsinB-2sinAcosB=sin(A+B)=sinAcosB=-1/2B=120`(
a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
1解由正弦定理sinC/sinA=2b-c/a=c/a即2b-c=c即b=c即三角形ABC是等腰三角形2由(1)知b=c=2,又由三角形ABC的周长为7即a+b+c=7即a=3即cosA=(b^2+c
1、cosBsinA/cosAsinB=(3sinc-sinb)/sinbcosbsina=cosa(3sinc-sinb)sin(a+b)=3sinccosacosa=1/3tana=2√2两向量积
钝角;c/b=sinC/sinB
余弦定理:cosA=(b²+c²-a²)/2bc证明:∵cosA=[(根号b)²+(根号c)²-(根号a)²]/2根号b·根号c=(b+c-
∵(a+c)/(a+b)=(b-a)/c∴ac+c^2=b^2-a^2∴a^2+c^2-b^2=-ac∴cosB=-1/2∴∠B=120°
sin(A-B)=sinB+sinC=sinB+sin(A+B)sinB+2sinBcosA=0COSA=-1/2A=120°
∵bcosB+ccosC=acosA∴sinAcosA=sinBcosB+sinCcosC∴sin2A=sin2B+sin2C∴sin2A=2sin(B+C)cos(B-C)∴2sinAcosA-2s
(1)因为O是外心,所以OA,OB,OC的长度都相等,设为x.设AO的延长线交BC于D,则4x*sin角BOD=5x*sin角COD4x*cos角BOD+5x*cos角COD=3x联立解得cos角CO
根据正弦定理:a/sinA=b/sinB,sinA=2sinB*cosB,代入得:cosB=a/(2b),根据余弦定理:b^2=a^2+c^2-2ac*(a/2b),2b^3=2a^2b+2bc^2-
一.在三角形ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(b+c-a)=3bc1.求角A的大小2.若a=根号3,b+c=3,求b和c的值1.解析:∵(a+b+c)(b+c-a)=3b
余弦定理:cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-1=ac令t=a+ct^2=a^2+c^2+2ac=1+3ac(a+c)^2>=4acac
(1)a/sinA=b/sinB根号3a=2bsinAa/sinA=2b/根号3=b/sinBsinB=根号3/2角B=60°(2)cosB=(a^2+c^2-b^2)/2ac=cos60°=1/2(
(a+b+c)(b+c-a)=3bc[K^2]是K的平方的意思,下面同理,乘号为点乘·(b+c+a)(b+c-a)=3bc(b+c)^2-a^2=3bcb^2+c^2-a^2=bc然后两边同除以2bc
C=60度余弦定理cosC=1/2=(a^2+b^2-c^2)/(2ab)a^2+b^2-c^2=aba^2+ac+b^2+bc=ab+bc+ac+c^2a(a+c)+b(b+c)=(b+c)(a+c
1、c=2,A=60°则AC边上的高=√3b=AC=面积×2/高=(√3/2)×2/√3=1因为b=c*sin60°三角形为直角三角形a=直角边=高=√32、由正弦定理a/b=sinA/sinB由ac
a²-(b-c)²=a²-b²+2bc-c²=2bc-2bccosAS=1/2bcsinA∴2bc-2bccosA=1/2bcsinA4-4cosA=
答案见http://wenwen.soso.com/z/q190761440.htm