两非零矩阵相乘为0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:19:31
两非零矩阵相乘为0
如果一个矩阵和它的转置相乘为单位矩阵,这个矩阵是什么矩阵?

正交矩阵.当然,仅仅是指方阵而言.正交矩阵的特点:行列式的绝对值是1,行和列都是与矩阵阶数相同维数的向量空间的标准正交基,作为线性变换不改变长度和内积,等等.

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵吗?

两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A

AB矩阵相乘为0 已知A 怎样求B?都非零

因为A是6*6的已知矩阵,而B是1*6的未知矩阵,那么要求的矩阵B也就是使方程组AX=0的唯一解.具体的方法是,把矩阵(A,B)化为行最简形,即可得出AX=0的解.

矩阵相乘等于他们的行列式相乘

矩阵相乘,结果是矩阵.他们的行列式相乘,结果是一个数.显然不能比较,不能说相等不相等.但是,矩阵相乘的行列式,等于矩阵行列式相乘.比如,矩阵A、B存在以下等式:|AB|=|A||B|

一个矩阵和它的转置相乘后的矩阵行列式为什么为0?

明显不对单位阵和他的转置相乘还是单位阵怎么可能行列式为零?

两个非零矩阵相乘等于0的条件是什么?

前一个矩阵的行空间与后一矩阵的列空间正交.

两个不等于0的矩阵相乘会不会等于零

会等于0矩阵两个矩阵相乘:1,1,11,12,2,2*2,23,3,3-3,-3新的矩阵的第a行第b列的元素等于第一个矩阵的第a行的元素分别于第2个矩阵的第b列的个个元素乘再相加.如这题中新矩阵的第3

如果两个矩阵A和B相乘为零矩阵,那么A和B的行列式值一定都为0吗?为什么?

不一定,因为矩阵的乘法是每一行的数另一个行列式的数相乘,然后形成一个新的行列式.具体看类似的参考书,很简单

四阶矩阵相乘 如何转换为三阶矩阵相乘?

不知道能不能转化为你说的完全的2个三阶矩阵相乘,但是你可以利用分块矩阵的方法,这样ABEFAE+BGAF+BHCD*GH=CE+DGCF+DH,其中A,E都是3阶矩阵,这样行不行?

两个矩阵相乘为0矩阵,其中一个是对角矩阵,那么另一个是不是一定为0矩阵

当然不行比如说diag{1,0,1,0}*diag{0,1,0,1}=0再问:�����������ǶԽǾ����再答:˵���㿴�����ҵļǺ�,��Ӧ��������diag��ʲô��˼dia

矩阵相乘结果是矩阵吗

呃,是矩阵.就算相乘之后行列都是1,那也是1阶矩阵,1阶矩阵也是矩阵,也可以看成是数

matlab 矩阵相乘

就是mod(A*B,2)例如A=[1,0,1;0,1,1;1,1,1];B=[1;1;0];在matlab中运行得C=A*BC=112mod(A*B,2)结果是ans=110mod(x,y)就是对x取

两非零矩阵相乘等于零,则他们的秩满足

设A,B分别是m*s,s*n矩阵\x0d若AB=0\x0d则B的列向量都是AX=0的解\x0d所以r(B)所以r(A)+r(B)\x0d请看图片的证明:

matlab矩阵相乘问题

用点乘就好了,表示相同维度矩阵或向量的对应元素相乘,即v3=v1.*v2

矩阵满秩 怎样证明该矩阵的转置与该矩阵相乘所得矩阵为对称正定矩阵且满秩

(A^TA)^T=A^T(A^T)^T=A^TA所以A^TA为对称矩阵.满秩矩阵的乘积仍满秩,故A^TA满秩对任一非零向量x,由于A满秩,Ax≠0所以(Ax)^T(Ax)>0即x^T(A^TA)x>0

一个矩阵和它的转置相乘是0,则矩阵是0矩阵.为什么?

前提是实矩阵证明很容易,看看AA^T的对角元是什么

矩阵如何相乘

矩阵相乘最重要的方法当然是一般矩阵乘积了,它只有在第一个矩阵的行数和第二个矩阵的列数相同时才有定义.一般单指矩阵乘积时,指的便是一般矩阵乘积.若A为m×n矩阵,B为n×p矩阵,则他们的乘积AB(有时记