为什么(45)^(n-1)收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:45:07
为什么(45)^(n-1)收敛
判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛

首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以

级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么?

收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c

复变函数,为什么级数∑1/n是发散的,而∑1/n²是收敛的?我觉得都是收敛的啊?

这就是级数的问题了,高等数学,同济版下册有证明的.那个n的次数大于等于2级数都收敛,等于一时级数发散.再答:��ӭ׷�ʡ�再答:ϣ������а���

级数1/(n+1)收敛还是发散?为什么?

发散,因为它和1/n等价,lim(1/n)/[1/(n+1)]=1(n趋近于∞时)所以他俩的敛散性一致又因为1/n发散,所以1/(n+1)也发散再问:�ȼۣ�������Ϊ���ǵ�n����һ���

为什么我用比值判别法做n分之1的级数收敛

∑1/n这个级数是发散的,书上有证明.若用比值判别法判断,[1/(n+1)]/(1/n)的极限为1,比值判别法失效.

为什么级数1/n发散,而1/n²却收敛?1/2n发散还是收敛?

先回答标题中的问题,发散∑1/n^p我们称为p级数,当且仅当p>1的时候收敛,证法许许多多至于你说的这个判别方法,要记住一点不论是达朗贝尔,还是柯西法,都是说1时发散,=1的时候这俩法则都不起作用,因

判断幂级数无穷∑n=1 【((-3)^n+5^n)/n】*X^n的收敛半径和收敛区域

设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛

判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么

∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n

高数,无穷级数敛散性1/n㏑n 收敛还是发散的,为什么?

积分判别法积分dx/(xlnx)换元,t=lnx,dt=dx/x=积分dt/t=lnt|=ln无穷-lnln2发散再问:真厉害!再请教一下,级数中lnx放在任何一个级数内是不是不影响敛散性?再答:不一

级数∑(-1)^n/n^λ*sin(π/ √n ) 当λ≥1/2时 绝对收敛嘛,为什么

条件收敛再问:为什么条件收敛?再答:本身可以用莱布尼茨证收敛再答:绝对值用p级数证再答:绝对值用p级数证再问:当是1/2的时候是条件。。明白了,多谢了

∑1/n^2这个级数为什么是收敛的,求证明

这是几位数学大师曾经问过欧拉的问题.其结果可用正弦(sin)的Maclaurin展开式得到.即∑1/n^2=派的平方/6

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

(1-cos派/n)为什么收敛

cos派等于负一,该式等于(1+1/n),n趋向无穷时,该式极限为1.证明可以用单调有界定理,上下界分别是2跟1,加上单调递减,结论得证.

为什么-1/n为什么是收敛的?

对于任意ε>0令N=[1/ε]+1>1/ε则对于任意n>N|-1/n|=|1/n|再问:您好,谢谢你!是不是这样的解法适用于所有的负值的式子呢?还有就是这样的解法在哪里有?我想进一步了解!谢谢您!再答

幂级数问题,如图,为什么X趋向3的时候1/n为发散?又为什么能推出收敛区域?

再问:那么这种题为什么要算x=3的时候。。。再答:因为用比值审敛法判断是否收敛时,你算出来的是开区间,如果是计算收敛区间时不用考虑x为3和—3的情况,如果计算收敛域的话,要判断x为3和-3时是否收敛。

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

高数高手来,数列{an}收敛,为什么级数∑n从1到∞(a下标n+1 -a下标n)收敛?

注:[*]表示下标∑(a[n+1]-a[n])=lim∞>(a[2]-a[1]+a[3]-a[2]+···+a[n+1]-a[n])=lim∞>(a[n+1]-a[1])由于{an}收敛,故极限lim