为何an趋向于0还是发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:55:34
最基础的是用极限的定义去判断:lim[f(x+△x)-f(x)]/△x.化简成不可再约分的形式后,如果分子=0,分母≠0,函数的极限趋向于零;如果分子≠0,分母=0,函数的极限趋向于无穷大.如果这时还
x趋向于0+,arctanx趋向于0,lnx趋向于-∞,1/lnx趋向于0于是当x趋向于0+,limarctanx/lnx=0(极限的四则运算法则:当x趋向于0+,limarctanx/lnx=lim
k=00k不等于0化简,然后等价无穷小发现趋向于无穷再问:什么啊,看不懂再答:k=0时,不解释;k不等于0,tankx=sinkx/coskxlim((tankx)/(xsinx))=limsinkx
limx->0arcsin2x/sin3x因为分子分母当x->0时都->0所以应用洛必塔法则,即对分子分母分别求导原式=lim->01/√(1-sin^22x)*(sin2x)'/cos3x*(3x)
没看懂,是否笔误?拉式定理?lim(s)=A?f'(0)正存在?能不能把原题写清楚?再问:再问:全是趋向0正再答: 对任意x∈(0,δ),在[0,x]上用Lagrange中值定理,存在ξ∈(0,x)
2/3再问:有过程吗?再答:根据等价无穷小,arctan2x~2x;sin3x~3x解决了再问:有没有不用的?再答:不用的话,使用洛必达也可以,上下求导再问:如果只是单纯求极限,有没有?再答:这也是单
级数1/n的平方是收敛的级数1/n^m当m>1时是收敛的当0
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
通项=(-1)/(2n-1)=(-1)×1/(2n-1)把常数-1提出来判断通项为1/(2n-1)的级数就行了因为1/(2n-1)>1/(2n)=0.5×1/n因为通项为1/n的级数是发散的(调和级数
看不到图,LZ再传一次吧!
e^(-x)=[e^(-1)]^x=(1/e)^x=1/e^xX趋向于0,s^x趋向于1所以极限=1
这种题要分左右极限讨论:1、当x→0+时,1/x→+∞,e^(1/x)→+∞,1/[1-e^(1/x)]→02、当x→0-时,1/x→-∞,e^(1/x)→0,1/[1-e^(1/x)]→1因此本题极
由等价无穷小可知:limf(x)/x=1时,因为x→0,所以f(x)→0再由等价无穷小:当x→0时[√1+x]-1~x/2.所以:当f(x)→0时{[√1+f(x)]-1~f(x)/2所以:lim{[
lim[2-√(xy+4)]/xy=lim[2-√(xy+4)][2+√(xy+4)]/{xy[2+√(xy+4)]}=lim(x-->0,y---->0)(-xy)/[xy[2+√(xy+4)]]=
这个命题有问题,当数列单调递增,an/a(n-1)的极限不会是0.
负无穷大再问:大学里没有讲过是负的无穷大,好像是负的无穷大也是属于无穷大,不是无穷小再答:极限为零,才叫无穷小量再问:是的,可是这题的答案是啥啊???还是均不是啊!!还望解答。再答:数分上的原话:对于
等价无穷小的概念请看一下高等教育出版社的《高等数学》同济大学第4版,里面写得很清楚
再答:至于为什么么等价,这是结论再答:记住就好再答:可以收藏我哦
光明与黑暗的交替就像白天与黑夜一样