二元函数z=f(x,y)的值域怎么看
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 17:07:39
这样:Z=X.*Y; %使用点乘mesh(X,Y,Z) 结果如图:看看是不是你想要的,有问题请进一步提出.再问:好吧我又2了。。。。再问一下,,
这两个都是三元方程,不是函数了.再问:这个叫隐函数。。。再答:不好意思,隐函数不一定是函数,和“函数”完全是两个概念。再问:hi,我问的是它是函数的情况再答:如果不加任何其他限制条件的话,你可以认为它
就是二维和三维的区别.
前者z是关于x,y的二元函数,后者是一个关于x,y,z的三元方程.求导当然是前者(偏导).后者方程的等号“左侧”相当于一个三元函数,也可求导.
你这个条件只能求得:记u=x/y,则有∂u/∂x=1/y,∂u/∂y=-x/y²则z=f(u)∂z/∂x=∂
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
求偏导时就是把其他变量当做常数.所以,对x的偏导为y*x^(y-1),对y的偏导是x^y*lnx.
偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在再答:所以是既非充分又非必要条件再答:希望对你有帮助
令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=
ipanda20092009-12-2710:33:59你就降低一维ipanda20092009-12-2710:34:09想象一下,y=f(x)ipanda20092009-12-2710:34:3
不是的,沿着任意方向的切线都存在唯一不能保证函数在这点可微,因为这些切线未必恰好都在一个平面上,二元函数的图像在某点存在切平面,这个二元函数在这点才可微.可微的几何意义,就是对应的曲面存在切平面.
记u=x/y,则有∂u/∂x=1/y,∂u/∂y=-x/y²则z=f(u)∂z/∂x=∂f/∂
z=f(x,y),其实z是关于y的一元函数再问:如果是在x1这一点处等于零呢?再答:一阶倒数为0的点是极值点
C可微则偏导数一定存在,偏导存在不一定连续,连续-->可微-->偏导数存在
e^z-xyz=0e^z·∂z/∂x-(yz+xy·∂z/∂x)=0∂z/∂x·(e^z-xy)=yz∂z/W
z=x^y,lnz=ylnx;(1/z)∂z/∂x=y/x,∂z/∂x=yz/x=yx^(y-1);(1/z)∂z/∂y=lnx
如果Y是一个常数那么这个函数理就是一元函数了!
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(