(x-siny)d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:54:19
z对x的偏导=cosx+cos(x+y)=0时,cosx=-cos(x+y)=cos(pi-x-y),所以x=pi-x-y.同理z对y的偏导=0时,有y=pi-x-y.所以x=y=pi/3.此时z=3
dy/dx=-x/siny-sinydy=xdx两边取积分cosy=ln|x|+c再问:详细些再答:囧算错了-sinydy=xdxS-sinydy=Sxdxcosy=x^2/2+c再问:要一步一步来再
siny-cos^2x=1/2-cosx-cos^2x,令cosx=x,则原式就为1/2-x-x^2-1x1有最小值为3/4,无最大值.
两边求导:cos(x+y)*(1+y')=cosx+cosy*y'y'=(cosx-cos(x+y))/(cos(x+y)-cosy)e^x+1=e^y*y'+y'y'=(e^x+1)/(e^y+1)
sin(x+y)sin(x-y)=-1/2(cos(x+y+x-y)—cos(x+y-x+y))=-1/2(cos2x—cos2y)=-1/2(1-2(sinx)^2-1+2(siny)^2)=(si
求导?是求积分吧∫e^x/(e^x+1)dx=∫1/(e^x+1)d(e^x+1)=ln|e^x+1|+C,C为常数∫cosy/sinydy=∫1/sinyd(siny)=ln|siny|+C,C为常
dy=dx+dsiny=dx+cosydy即y'=dy/dx=1/(1-cosy)对x求导y''=-1/(1-cosy)²*(1-cosy)'=-siny*y'/(1-cosy)²
隐函数的导数求法~
1+y'=cosy*y'y'=1/(cosy-1)dy/dx=1/(cosy-1)
解抛物线y²=x与直线y=x的交点得(0,0),(1,1)∫∫siny/ydσ(注意先积x,后积y)=∫[0,1]siny/ydy∫[y^2,y]dx=∫[0,1]siny/y(y-y^2)
首先对于这样的第二类线性积分,参数方程很重要x=2(cost)^2y=2sint*costπ/4≤t≤π/2然后就用曲线积分公式你可以用这个思路再问:用格林公式怎么做
这个证明方法很多,你得注明你现在就读中学还是大学中学证明法x≥0时,sinx≤x【这个常用,很好证单位圆法或函数求导法】x<0时sinx>x即|sinx|≤|x|【这个结论更一般】|sinx-siny
两边对x求导有1-y'+y'cosy=0所以y'=1/(cosy-1)
x-y+1/2siny=0F(x,y)=y-x-1/2siny=0F,Fx,Fy在定义域的任意点都是连续的,F(0,0)=0Fy(x,y)>0f'(x)=-Fx(x,y)/Fy(x,y)=1/(1-1
两边关于x求导,注意y是x的函数y'cosy=[1/(x+y)]*(1+y').①解得y'=1/(x+y)÷[cosy-1/(x+y)].②对①两边关于x求导可得y''cosy-(y')²s
移项,得到|sinx-siny|/|x-y|≤1即|(sinx-siny)/(x-y)|≤1注意绝对值里面的式子,可以看作是柯西微分中值定理,于是令f(x)=sinx;有(sinx-siny)/(x-
siny=1/3-sinx则-1
∵x+1x∈(-∞,-2]∪[2,+∞)∴|x+1x|∈[2,+∞),其最小值为2又∵siny的最大值为1故不等式|x+1x|≥|a−2|+siny恒成立时,有|a-2|≤1解得a∈[1,3]故答案为
定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=
如图所示,一个半径为1的圆.圆心为O,∠BOE=x,∠AOE=y.因为半径为1,所以弧长BE=xr=x,弧长AE=y.所以x-y=弧长AB.sinx=BD/BO=BD,siny=AC.所以sinx-s