二阶导数大于零是凹函数吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:41:48
利用泰勒中值定理f(x)=f(x0)+f'(x0)(x-x0)+f''(t)(x-x0)²/2!t∈(x,x0)因为f(x)的二阶导数大于等于0,所以f(x)大于等于f(x0)+f(x0)的
首先F(x)在x=1处一定连续才有倒数,所以F(x)在1处的左极限和右极限分别存在切相等所以F(1-)=f(1)=F(1+)=c所以c=f(1)然后F(x)二阶可导必定1阶可导,照葫芦花飘飘推出b=f
先要搞清楚什么是原函数.如果F'(x)=f(x),则F(x)就是f(x)的原函数.显然在点x=a处,F'(a)=f(a),所以,只要f(x)在点x=a处存在,其原函数的导数就在该点也存在.而函数f(x
首先要明白导数的意义他是描述函数走势的在x0时一阶导数为0二阶导数大于0那么表示一阶导数在x0处还是处于一个上升态势的也就是在x0的领域内一阶导单调增此时一阶导在x0处取0值表示函数在此处取极值
意义如下:(1)斜线斜率变化的速度(2)函数的凹凸性.
函数的二阶导数大于零是函数下凸的充分条件,但非必要条件,因为不可导的函数也允许是下凸的,如f(x)=|x|.
clearallsymsxyg=sym('sin(x+y(x))=x')dgdx2=diff(g,x,2)
1.y'=x^2(2^x)'+(2^x)*2x=x^2*2^x*ln2+(2^x)*2xy''=(x^2*2^x*ln2+(2^x)*2x)*ln2+2x(2^x)ln2+2^x*22.y'=e^xc
我有很多题目,在电子书第50页开始,到66页,你如果要,我给你发过去,
二阶导数和单调性无关而是表示凹凸性二阶导数大于零则是凹函数,即图像是∪型的二阶导数小于零则是凸函数,即图像是∩型的
如果二阶导数存在,当然没有大问题.主要问题是,可能在部分点上,二阶倒数不存在.但是在二阶导数存在的那些地方,都是可以的;在部分点上,可能二阶导数为0.这个问题其实就是,已知一个函数是单调增的,问其导数
函数的一阶导数反映函数的单调性,二阶导数是一阶导数的求导,二阶导数大于0,说明一阶导数单增,则在一阶导数从负无穷增加到零的过程中,原函数切线斜率的绝对值不断减小,一阶导数为零时原函数切线水平,当一阶导
通俗的讲,函数(或者说曲线)在人们的一般常识中都是以三维空间来标识的,空间超过三维以后,直观的几何意义就很难去描述了.理解这个之后,再来观察函数的导数就比较容易了,以为函数具有几何意义的最高阶数是三阶
你说的那个没有错:一阶导小于0时,若二阶导大于0,则函数变化越来越慢你老师说的是另一种情况一阶导大于0时,若二阶导大于0,则函数变化越来越快归纳起来就是若二阶导大于0,则原函数:在递减区间,递减(变化
问题有些糊涂.所谓的“趋于”二字,总是有条件的.例如:当自变量趋于正无穷时,二阶导数趋于正无穷;当自变量无限接近于M时,二阶导数趋于正无穷;当自变量趋于负无穷时,二阶导数趋于正无穷;……………………;
导数也是一种函数(因为每个x对应唯一的f'(x)),那么二阶导数就是来研究这个函数变化的.比如位移的导数是速度,速度的导数是加速度(均对时间求导)
存在呀f'(x)=1f"(x)=0,二阶导恒为0再问:��������˵Ҫf(x)��һ������x�ĺ����
正解是中值定理,这里不好打符号参与资料中有详解
当一阶导数等于0时,这个点(设为A点)就是极点,1)若此时二阶导数大于0,说明一阶导数在A点连续且递增,那么当xA时,一阶导数大于0.,原函数递增.A点又是极点,所以此时,A为极小值点.2)当此时二阶
y=-x³y‘=-3x²y’‘=-6x在x=-1处二阶导数为6一阶导数为-3所以你的命题是错的