交错级数(-1)^nun,un=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:00:19
(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
∑Un和∑Un^2都是正项级数,且lim(n->∞)Un^2/Un=lim(n->∞)Un=0由比较法的极限形式知:级数∑Un收敛,则级数∑Un^2收敛.定理3(比较法的极限形式)请参见
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
根据交错级数莱布尼兹判别法,这个级数的一般项的绝对值趋于0,并且一般项的绝对值是单调递减的,故这个交错级数是收敛的以下是莱布尼兹定理的介绍 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收
直接在arctanx的Maclaurin展开当中代x=1即可楼上的做法也是对的,只不过需要引进虚数及Euler公式了
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u
改变级数的有限项不影响级数的敛散性,只影响级数和的大小.
可以的,级数收敛与否和级数的前有限项没有关系,只要满足那两个条件就行
不一定,有时候会等于1.
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
这怎么是交错级数?是二次积分: ∫[0,1]dy∫[0,y]cosy²dx =∫[0,1]ycosy²dy =(1/2)siny²|[0,1] =(1/2)sin
级数(un-un-1)收敛于0
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0