从正态总体N(3.4,6²)中抽取容量为n的样本
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:15:44
对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就
正态总体N(μ,σ²),样本均值Xbar服从N(μ,σ²/n),其中n为样本容量,此题的样本均值的方差为1,标准差即为1.
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
样本容量10样本均值9.9样本标准差4.04007抽样均方误差1.277585置信度0.95自由度9t分布的双侧分位数2.262157允许误差2.890098置信区间下限7.009902置信区间上限1
置信水平为1-a的置信区间为[(X-σ/(根号n)Z(a/2),X+[(X-σ/(根号n)Z(a/2)]X为算术平均数a=1-90%=10%Z(a/2)=?(查表可以知道)把数据代入得置信区间!(2)
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
设正态总体服从N(U,V^2),X,S^2分别是样本均值和样本方差,容易得到(X-U)/(V/根号n)~N(0,1)和(n-1)S^2/V^2~卡方(n-1)的分布由于V^2为未知,考虑到S^2是V^
分析结果:One-SampleT:Data1VariableNMeanStDevSEMean95%CIData1810.003.461.22(7.10,12.90)但是,依据CTL定理,你这个样本量太
将样本中超出西格玛区间的值除去,再求出均值,直到都在西格玛区间内,求出的置信区间才是对的,再试试!
总体正态,方差未知,符合t分布数学符号我不会搞,剩下的自己查书吧,很简单,或者明天我来给你做
样本均值X0~N(4,25/n)那么√n(X0-4)/5~N(0,1)P(2=24.01所以n至少为25再问:帮我再看看这个随机变量X服从均值为3,方差为σ^2的正态分布,且P{3
X~~(4.2,5^2/n)P(2.2=4.9^2=24.01样本容量至少取25
-1.96*3.46/2.83
fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,
∵标准正态总体N(0,1)中,正态曲线关于x=0对称,∵φ(1.98)=0.9762,∴P(-1.98<x<1.98)=1-2(1-0.9762)=0.9524故答案为:0.9524.
抽了n次某个物体被第一次抽到的概率是1/N被第二次抽到的概率为(N-1)/N*1/(N-1)=1/N.被第m(1
样本标准差为3.3,样本数为20,所以总体均值的标准差为:3.3/根号20=0.737995%置信区间为:Mean-1.96*SE
我手边没有t分布的表格,只能告诉你怎么做了1.从数据中求出均值X,样本方差S^2,n=8,总体均值为u2.t=(X-u)/S/根号下n服从t(n-1)分布3.P[-k≤t≤k]=1-α=0.95查表t
x~(3.4,(6/√n)^2),Φ((5.4-3.4)/(6/√n))-Φ((1.4-3.4)/(6/√n))>=0.95,2Φ(√n/3)-1>=0.95,Φ(√n/3)>=0.975,√n/3>
贾平凹不是作家么?还写数理统计的书?