以AB为圆的直径,在圆O上取异于AB的一点C,并连接BC,AC,过点A作

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:01:54
以AB为圆的直径,在圆O上取异于AB的一点C,并连接BC,AC,过点A作
在三角形ABC中,以BC为直径的圆O交AB于D,交AC于E,BD=CE,求证:AB=AC

连接od,oe三角形obd,oce三边相等,是全等三角形由此可知角abc等于角acb三角形abc是等腰三角形,ab=ac

已知线段AB,如图,请以线段AB为弦(非直径)画圆O,并在圆O上画出一条直径AC

作AB的垂直平分线,在该垂直平分线上任选一点(除了与AB的交点)作为圆的圆心D,连接AD,AD的长即为半径,作圆就行了.再延长AD,与圆的交点就是C,就作出了AC.

已知在三角形ABCA中,以AB为直径的圆O过AC边的中点D 且DE垂直于BC于点E

连接OD,那么OD是中位线,所以OD平行BC,所以∠ODE=∠CED=90°,所以OD垂直DE,从而DE是圆O切线

以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D

证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线

在三角形ABC中,角A=90度,以AB为直径的圆O交BC于D,E为AB边中点 ,求证:DE是圆O的切线?

“E为AB边中点”应该是“E为BC边中点”吧证明:连接OD,OE∵AB是直径∴∠ADB=∠CDB=90°∵E是BC的中点∴ED=EB∵OB=OD,OE=OE∴△ODE≌△OBE∴∠ODE=∠OBE=9

AB为圆O直径,以OA为直径的圆O1与圆O的弦AC交于点D,DE垂直OC

1.【求证ad=dc】连接do,证rt△ado≌rt△cdo2.【求证de是圆o1的切线】∵ao1=do1∴∠dao1=∠ado1∵ao=co∴∠cao==∠aco∴∠ado1=∠aco∴do1//c

已知:如图,在Rt△ABC中,∠A=90°,以AB为直径做○o,BC交圆o于点D,E为边AC的中点,ED、AB的延长线相

证明:(1)连接AD,OD∵AB是⊙O的直径∴∠ADB=90°∴∠ADC=90°∵E是AC的中点∴DE=AE(直角三角形斜边中线等于斜边的一半)∴∠EDA=∠EAD∵OD=OA∴∠ODA=∠OAD∴∠

圆o 以ab为直径 弦cd交ab于p op=pc

解题思路:利用圆心角、弧、弦、弦心距的关系定理求解。解题过程:呵呵,题目是这样的吧?如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想弧AD与弧CB之间的关系,并证明你的猜想。过程请见图

在直角梯形ABCD中,AB⊥AD,AB⊥BC,CD=AD+BC.求证以DC为直径的圆O与AB相切.

应该取CD的中点E,作EF⊥AB于点F因为AB⊥AD,AB⊥BC,EF⊥AB所以EF平行AD平行BC因为点E是CD的中点(上面已写,可以省略)所以EF为等腰梯形ABCD的中位线(直接取中位线是不行的)

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

AB是圆O的直径,其长为1,它的三等分点分别为C与D,在AB的两侧以AC、AD、CB、DB为直径分别画圆(如图所示).这

因为AB=1,C、D是AB的三等分点,所以AC=13,AD=23,阴影部分的面积是:π×[(23)2-(13)2],=π×(49-19),=13π;答:阴影部分的面积是13π.

一道数学题,如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交AC

1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A

如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于D、E,

﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中

△ABC中,以BC为直径的圆交AB于点D,AC为圆O的切线

∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可

△ABC中,以BC为直径的圆交AB与点D,AC为圆O的切线.

此题难度不小啊!码字不易,望楼主采纳!

以三角形ABC的BC边为直径的圆O交AB于G,AD切圆O于D,在AB上取AE=AD,作EF垂直AB且与AC延长线交于点F

1)证明:连CG,因为BC是直径所以∠BGC=90°因为EF⊥AB所以CG∥EF所以AC/AF=AG/AE因为AE=AD所以AC/AF=AG/AD因为AD是圆的切线所以AD²=AG*AB即A

(1/2)在平行四边形ABCD中,AB=1O,AD=m,角D=6O度,以AB为直径作圆O.(1)求圆心O到CD的距离(用

作AH垂直CD于H.∠D=60°,则∠DAH=30°,DH=AD/2=m/2.(直角三角形中30度的内角所对直角边等斜边一半)所以,AH=√(AD^2-DH^2)=(√3/2)m.即圆心O到CD的距离

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形

如图,在圆O中,如果作两条互相垂直的直径AB.CD,那么弦AC是圆O内接正四边形的一边.如果以点A为圆心,圆O的半径为半

AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边

已知如图在ABC中AB=AC以AB为直径的圆O分别交BC、AC于点D、E.

1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=